Câu 19 trang 118 Sách bài tập Hình học 11 Nâng cao


Giải bài tập Câu 19 trang 118 Sách bài tập Hình học 11 Nâng cao

Đề bài

Cho hình chóp S.ABCD có đáy là hình bình hành, mặt bên SAB là tam giác vuông tại A. Với điểm M bất kì thuộc cạnh AD (M khác A và D), xét mặt phẳng (α) đi qua điểm M và song song với SA, CD.

a) Thiết diệm của hình chóp S.ABCD khi cắt bởi mp(α) là hình gì?

b) Tính diện tích thiết diện theo a và b; biết AB = a, SA = b, M là trung điểm của AD.

Lời giải chi tiết

 

a) Dễ thấy thiết diện là tứ giác MNPQ trong đó MN // QP // CD, MQ // SA.

Do SA ⊥ AB, AB //MN, MQ // SA nên thiết diện MNPQ là hình thang vuông tại M.

b) \({S_{MNPQ}} = {1 \over 2}\left( {MN + PQ} \right).MQ\)

Do M là trung điểm của AD nên:

\(\eqalign{  & MQ = {1 \over 2}SA = {1 \over 2}b  \cr  & PQ = {1 \over 2}CD = {1 \over 2}a  \cr  & MN = a \cr} \)

Vậy \({S_{MNPQ}} = {1 \over 2}\left( {a + {a \over 2}} \right).{b \over 2} = {{3{\rm{a}}b} \over 8}\).

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>>KHOÁ NỀN TẢNG LỚP 12 DÀNH CHO 2K4 NĂM 2022 học sớm chiếm lợi thế luyện thi TN THPT & ĐH


Gửi bài