Câu 4.3 trang 133 sách bài tập Đại số và Giải tích 11 Nâng cao


Chứng minh rằng các dãy số sau đây có giới hạn 0:

Lựa chọn câu để xem lời giải nhanh hơn

Chứng minh rằng các dãy số \(\left( {{u_n}} \right)\) sau đây có giới hạn 0:

 

LG a

\({u_n} = {{\sqrt {{5^n}} } \over {{3^n} + 1}}\)  

 

Lời giải chi tiết:

\(0 < {u_n} = {{{{\left( {\sqrt 5 } \right)}^n}} \over {{3^n} + 1}} < {{{{\left( {\sqrt 5 } \right)}^n}} \over {{3^n}}} = {\left( {{{\sqrt 5 } \over 3}} \right)^n}\) với mọi n

 Vì  \(0 < {{\sqrt 5 } \over 3} < 1\) nên \(\lim {\left( {{{\sqrt 5 } \over 3}} \right)^n} = 0.\) Do đó \({{\mathop{\rm limu}\nolimits} _n} = 0\)

 

LG b

\({u_n} = {{{{\left( { - 1} \right)}^n}\sin {n^2} + \cos n} \over {2\root 3 \of n  + 1}}\)            

 

Lời giải chi tiết:

\(-1\le{{\left( { - 1} \right)}^n}\sin {n^2}\le 1\) và  \(-1 \le\cos n \le 1\) với mọi n nên \(|{{\left( { - 1} \right)}^n}\sin {n^2}+ \cos x| \le 2\) với mọi n.

Suy ra \(|{u_n}| = {|{{{\left( { - 1} \right)}^n}\sin {n^2} + \cos n|} \over {2\root 3 \of n  + 1}} \le \frac{ 2}{2 \sqrt[3]{n}+1}\) 

Vì \(\lim {\frac{2}{2 \sqrt[3]{n}+1}=0}\) nên \({{\mathop{\rm limu}\nolimits} _n} = 0\)

 

LG c

\({u_n} = {{{{\left( { - 1} \right)}^n}} \over {{2^{n + 1}}}} - {1 \over {{3^{n + 1}}}}\)          

 

Lời giải chi tiết:

\(\left| {{u_n}} \right| \le {1 \over {{2^{n + 1}}}} + {1 \over {{3^{n + 1}}}} < {1 \over {{2^{n + 1}}}} + {1 \over {{2^{n + 1}}}} = {1 \over {{2^n}}}\) với mọi n

Vì \(\lim {1 \over {{2^n}}} = \lim {\left( {{1 \over 2}} \right)^n} = 0,\) từ đó suy ra \({{\mathop{\rm limu}\nolimits} _n} = 0\)

 

LG d

\({u_n} = {{n + \cos {{n\pi } \over 5}} \over {n\sqrt n  + \sqrt n }}\)

 

Lời giải chi tiết:

Hướng dẫn: \(0 \le {u_n} \le {{n + 1} \over {\sqrt n \left( {n + 1} \right)}} = {1 \over {\sqrt n }}\) với mọi n

Loigiaihay.com

 

Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí