Câu 4.1 trang 133 sách bài tập Đại số và Giải tích 11 Nâng cao


Chứng minh rằng các dãy số sau với số hạng tổng quát có giới hạn 0:

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Lựa chọn câu để xem lời giải nhanh hơn

Chứng minh rằng các dãy số sau với số hạng tổng quát có giới hạn 0:

 

LG a

\({{{{\left( { - 1} \right)}^n}} \over n+ {1 \over 2}}\)     

 

Lời giải chi tiết:

\(\left| {{{{{\left( { - 1} \right)}^n}} \over {n + {1 \over 2}}}} \right| = {1 \over {\left| {n + {1 \over 2}} \right|}} \le {1 \over n};\,\,\forall n > 0\)

\(\lim {1 \over n} = 0\)

Do đó: \(\lim {{{{\left( { - 1} \right)}^n}} \over {n + {1 \over 2}}} = 0\)

 

LG b

 \({1 \over {n!}}\)    

 

Lời giải chi tiết:

\({1 \over {n!}} = {1 \over {1.2...n}} \le {1 \over n};\,\,\forall n > 0\)

\(\lim {1 \over n} = 0\)

Do đó: \(\lim {1 \over {n!}} = 0\)

 

LG c

\({{\sin n} \over {n\sqrt n  + 1}}\)

 

Lời giải chi tiết:

Vì \(\left| {{{\sin n} \over {n\sqrt n  + 1}}} \right| = {{\left| {\sin n} \right|} \over {n\sqrt n  + 1}} \le {1 \over n}\) với mọi n và \(\lim {1 \over n} = 0\) nên

                         \(\lim {{\sin n} \over {n\sqrt n  + 1}} = 0\)

Loigiaihay.com

 

Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí