Câu 4.2 trang 133 sách bài tập Đại số và Giải tích 11 Nâng cao


Chứng minh rằng hai dãy số

Đề bài

Chứng minh rằng hai dãy số \(\left( {{u_n}} \right),\left( {{v_n}} \right)\) với

                        \({u_n} = {{1 + \cos {n^2}} \over {2n + 1}};\,\,{v_n} = {{1 + \sin 2n} \over {{n^2} + n}}\)

Có giới hạn 0

 

Lời giải chi tiết

\(0 \le {{1 + \cos {n^2}} \over {2n + 1}} \le {2 \over {2n + 1}} \le {1 \over n}\)

Do đó \(\lim {u_n} = 0\)

\(0 \le {v_n} \le {{n + 1} \over {n\left( {n + 1} \right)}} = {1 \over n}\)

Do đó \(\lim {v_n} = 0\)

Loigiaihay.com

 

Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí