Câu 4.6 trang 134 sách bài tập Đại số và Giải tích 11 Nâng cao


Chứng minh rằng

Lựa chọn câu để xem lời giải nhanh hơn

Chứng minh rằng

 

LG a

\(\lim 2\left( {\sqrt {{n^2} + 1}  - n} \right) = 0\)     

 

Lời giải chi tiết:

Nhân và chia biểu thức đã cho với \(\sqrt {{n^2} + 1}  + n,\) ta được

            \(2\left( {\sqrt {{n^2} + 1}  - n} \right) = {2 \over {\sqrt {{n^2} + 1}  + n}} \le {2 \over {n + n}} = {1 \over n}\)

Vậy \(\lim 2\left( {\sqrt {{n^2} + 1}  - n} \right) = 0\)  


 

LG b

\(\lim \left( {\sqrt {n + 1}  - \sqrt n } \right) = 0\)

 

Lời giải chi tiết:

Nhân và chia biểu thức đã cho với \( {\sqrt {n + 1}  + \sqrt n }\)

\(\sqrt {n + 1}  - \sqrt n  = {1 \over {\sqrt {n + 1}  + \sqrt n }} \le {1 \over {2n}}\)

Vậy \(\lim \left( {\sqrt {n + 1}  - \sqrt n } \right) = 0\)

Loigiaihay.com

 

Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 1: Dãy số có giới hạn 0

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.