Câu 2.95 trang 86 sách bài tập Giải tích 12 Nâng cao


Giải các phương trình sau:

Lựa chọn câu để xem lời giải nhanh hơn

Giải các phương trình sau:

LG a

\({\log _9}\left( {{{\log }_3}x} \right) + {\log _3}({\log _9}x) = 3 + {\log _3}4;\)

Lời giải chi tiết:

\(x = {3^{36}}\)  

\(\begin{array}{l}{\log _9}\left( {{{\log }_3}x} \right) + {\log _3}({\log _9}x) \\= 3 + {\log _3}4\\ \Leftrightarrow {\log _{{3^2}}}\left( {{{\log }_3}x} \right) + {\log _3}\left( {{{\log }_{{3^2}}}x} \right)\\ = 3 + {\log _3}4\\ \Leftrightarrow {\log _3}{\left( {{{\log }_3}x} \right)^{\frac{1}{2}}} + {\log _3}\left( {\dfrac{1}{2}{{\log }_3}x} \right) \\= 3 + {\log _3}4\\ \Leftrightarrow {\log _3}\left[ {\dfrac{1}{2}{{\left( {{{\log }_3}x} \right)}^{\frac{3}{2}}}} \right] = 3 + {\log _3}4\\ \Leftrightarrow {\left( {{{\log }_3}x} \right)^{\frac{3}{2}}} = {2^3}{.3^3}\\ \Leftrightarrow {\log _3}x = 36 \Leftrightarrow x = {3^{36}}\end{array}\)

LG b

\({\log _2}x{\log _4}x{\log _8}x{\log _{16}}x = {2 \over 3};\)

Phương pháp giải:

Biến đổi đưa về lôgarit cơ số 2

Lời giải chi tiết:

\(x = 4\) và \(x = {1 \over 4}\)

LG c

\({\log _5}{x^4} - {\log _2}{x^3} - 2 =  - 6{\log _2}x{\log _5}x.\)

Lời giải chi tiết:

Biến đổi phương trình về dạng tích

\(\left( {3{{\log }_2}x + 2} \right)\left( {2{{\log }_5}x - 1} \right) = 0.\)

Vậy \(x = {1 \over {\root 3 \of 4 }}\) và \(x = \sqrt 5 \)

Loigiaihhay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài