Câu 2.93 trang 85 sách bài tập Giải tích 12 Nâng cao


Dùng phương pháp đặt ẩn phụ để giải các phương trình sau:

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Lựa chọn câu để xem lời giải nhanh hơn

Dùng phương pháp đặt ẩn phụ để giải các phương trình sau:

LG a

\(4{\log _9}x + {\log _x}3 = 3\)

Lời giải chi tiết:

Ta có: \({\log _x}3 = {1 \over {{{\log }_3}x}}\). Đặt \(t = {\log _3}x(t \ne 0)\) dẫn đến phương trình

\(2{t^2} - 3t + 1 = 0\)

\(\Leftrightarrow \left[ \matrix{
t = 1 \hfill \cr 
t = {1 \over 2} \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
{\log _3}x = 1 \hfill \cr 
{\log _3}x = {1 \over 2} \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x = 3 \hfill \cr 
x = \sqrt 3 \hfill \cr} \right.\)

Vậy phương trình có hai nghiệm: \(x = 3\) và \(x = \sqrt 3 \)

LG b

\({\log _x}2 - {\log _4}x + {7 \over 6} = 0\)

Lời giải chi tiết:

Ta có: \({\log _x}2 = {1 \over {{{\log }_2}x}}\).            

Đặt \(t = {\log _2}x(t \ne 0)\) dẫn đến phương trình

\( - 3{t^2} + 7t + 6 = 0\)

\( \Leftrightarrow \left[ \matrix{
t = 3 \hfill \cr 
t = {{ - 2} \over 3} \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
{\log _2}x = 3 \hfill \cr 
{\log _2}x = {{ - 2} \over 3} \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x = 8 \hfill \cr 
x = {2^{{{ - 2} \over 3}}} \hfill \cr} \right.\)

Vậy phương trình có hai nghiệm: \(x = 8\) và \(x = {2^{ - {2 \over 3}}}\)

LG c

\({{1 + {{\log }_3}x} \over {1 + {{\log }_9}x}} = {{1 + {{\log }_{27}}x} \over {1 + {{\log }_{81}}x}}.\)

Lời giải chi tiết:

Đặt \(t = {\log _3}x\), ta có

\(\eqalign{& {{1 + t} \over {1 + {1 \over 2}t}} = {{1 + {1 \over 3}t} \over {1 + {1 \over 4}t}}\cr&\Leftrightarrow 3\left( {1 + t} \right)\left( {4 + t} \right) = 2\left( {2 + t} \right)\left( {3 + t} \right)  \cr&  \Leftrightarrow 12 + 15t + 3{t^2} = 12 + 10t + 2{t^2} \Leftrightarrow {t^2} + 5t = 0 \cr} \)

 \(\, \Leftrightarrow t = 0\) hoặc \(t =  - 5\)

Với \(t = 0\) thì \({\log _3}x = 0\), nên \(x = {3^0} = 1\)

Với \(t =  - 5\) thì \({\log _3}x =  - 5\), nên \(x = {3^{ - 5}} = {1 \over {243}}\)

Vậy phương trình có hai nghiệm: \(x = 1\) và \(x = {1 \over {243}}\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí