Câu 2.109 trang 88 sách bài tập Giải tích 12 Nâng cao


Tùy theo m ,hãy biện luận số nghiệm của phương trình:

Đề bài

Tùy theo m ,hãy biện luận số nghiệm của phương trình:

                                \(\left( {m - 3} \right){.9^x} + 2\left( {m + 1} \right){.3^x} - m - 1 = 0\)

Lời giải chi tiết

Đặt \(y = {3^x}(y > 0)\), ta có

  \(\left( {m - 3} \right){y^2} + 2\left( {m + 1} \right)y - \left( {m + 1} \right) = 0\) (1)

Số nghiệm của phương trình đã cho bằng số nghiệm dương của (1)

- Xét \(m = 3\) thì (1) có nghiệm \(y = {1 \over 2}\) (thỏa mãn \(y > 0\))

- Nếu \(m \ne 3\)  thì

\(\Delta ' = {\left( {m + 1} \right)^2} + \left( {m + 1} \right)\left( {m - 3} \right) \)

\(= 2\left( {m + 1} \right)\left( {m - 1} \right)\)

Đặt \(f(y) = \left( {m - 3} \right){y^2} + 2\left( {m + 1} \right)y - \left( {m + 1} \right)\), ta có:

       \(\eqalign{& \left( {m - 3} \right)f(0) = \left( {3 - m} \right)\left( {m + 1} \right)  \cr& S = {{2\left( {m + 1} \right)} \over {3 - m}} \cr} \)

Lập bảng xét dấu:

                               

Từ bảng xét dấu ta có:

- Với \(m\le - 1\) hoặc \(m \ge 3\) hoặc \(m = 1\) thì phương trình có một nghiệm,

- Với \( - 1 < m < 1\) thì phương trình vô nghiệm.

- Với \(1 < m < 3\) thì phương trình có hai nghiệm.

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài