Câu 2.90 trang 85 sách bài tập Giải tích 12 Nâng cao


Gải các phương trình sau:

Lựa chọn câu để xem lời giải nhanh hơn

Gải các phương trình sau:

LG a

\({4^{x + 1}} - {6.2^{x + 1}} + 8 = 0\)

Lời giải chi tiết:

Đặt \(y = {2^{x + 1}}(y > 0)\), đưa phương trình đã cho về dạng \({y^2} - 6y + 8 = 0\)

Vậy \(x = 0\) và \(x = 1\)

LG b

\({3^{1 + x}} + {3^{1 - x}} = 10\)

Lời giải chi tiết:

Đặt \(y = {3^x}(y > 0)\) ta có     \(3{y^2} - 10y + 3 = 0\)

Vậy \(x =  - 1\) và \(x = 1\)

LG c

\({3^{4x + 8}} - {4.3^{2x + 5}} + 27 = 0\)

Lời giải chi tiết:

\(x =  - {3 \over 2}\) và \(x =  - 1\) 

\({3^{4x + 8}} - {4.3^{2x + 5}} + 27 = 0 \\ \Leftrightarrow {3^{2(2x + 4)}} - {12.3^{2x + 4}} + 27 = 0\)

Đặt \(y = {3^{2x + 4}}(y > 0)\), dẫn đến phương trình  \({y^2} - 12y + 27 = 0\)

Tìm được \(y = 3\) và \(y = 9\) (đều thỏa mãn)

Với \(y = 3\) thì \(y = {3^{2x + 4}} = 3 \Leftrightarrow 2x + 4 = 1\\ \Leftrightarrow x =  - {3 \over 2}\)

Với \(y = 9\) thì \(y = {3^{2x + 4}} = {3^2} \Leftrightarrow 2x + 4 = 2\\ \Leftrightarrow x =  - 1\)

LG d

\({3.25^x} + {2.49^x} = {5.35^x}.\)

Lời giải chi tiết:

\(x = 0\) và \(x = {\log _{{5 \over 7}}}{2 \over 3}\) 

Chia hai vế của phương trình cho \({35^x}\), ta được

                                \(3.{\left( {{5 \over 7}} \right)^x} + 2.{\left( {{7 \over 5}} \right)^x} = 5\)

Đặt \(t = {\left( {{5 \over 7}} \right)^x}(t > 0)\), ta có \(3t + {2 \over t} = 5\) hay \(3{t^2} - 5t + 2 = 0\)

Từ đó tìm được \(t = 1\)  và \(t = {3 \over 2}\) (đều thỏa mãn)

Với \(t = 1\)  ta có \({\left( {{5 \over 7}} \right)^x} = 1\) nên \(x = 0\)

Với \(t = {2 \over 3}\)  ta có \({\left( {{5 \over 7}} \right)^x} = {2 \over 3}\) nên \(x = {\log _{{5 \over 7}}}{2 \over 3}\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài