Câu 2.102 trang 87 sách bài tập Giải tích 12 Nâng cao


Giải các phương trình sau:

Lựa chọn câu để xem lời giải nhanh hơn

Giải các phương trình sau:

LG a

\({6^x} + {8^x} = {10^x};\)

Lời giải chi tiết:

Chia hai vế cho \({10^x}\) , ta được \({\left( {{3 \over 5}} \right)^x} + {\left( {{4 \over 5}} \right)^x} = 1\)  rồi chứng tỏ rằng \(x = 2\) là nghiệm duy nhất

Ta tìm được \(x = 2\)

LG b

\({\left( {\sqrt {5 + 2\sqrt 6 } } \right)^x} + {\left( {\sqrt {5 - 2\sqrt 6 } } \right)^x} = \sqrt {{{10}^x}} ;\)

Lời giải chi tiết:

Chia hai vế cho \(\sqrt {{{10}^x}} \), ta được

  \(\sqrt {{{\left( {{{5 + 2\sqrt 6 } \over {10}}} \right)}^x}  }+ \sqrt {{{\left( {{{5 - 2\sqrt 6 } \over {10}}} \right)}^x}}  = 1\)

Đặt vế trái là \(f(x)\) ta thấy \(f(2) = 1\)

Với \(x > 2\) , ta có

\(f(x) = \sqrt {{{\left( {{{5 + 2\sqrt 6 } \over {10}}} \right)}^x}  }+ \sqrt {{{\left( {{{5 - 2\sqrt 6 } \over {10}}} \right)}^x}} \\ < \sqrt {{{\left( {{{5 + 2\sqrt 6 } \over {10}}} \right)}^2}  }+ \sqrt {{{\left( {{{5 - 2\sqrt 6 } \over {10}}} \right)}^2}}  = 1\)

Với \(x < 2\) , tương tự ta có \(f(x) > 1\) .

Vậy phương trình có nghiệm duy nhất \(x = 2\) .

LG c

\({\left( {\sqrt {2 - \sqrt 3 } } \right)^x} + {\left( {\sqrt {2 + \sqrt 3 } } \right)^x} = {2^x};\)

Lời giải chi tiết:

Chia hai vế cho \({2^x}\)

Ta tìm được \(x = 2\)

LG d

\({3^x} - {\left( {{1 \over 3}} \right)^x} + {2^x} - {\left( {{1 \over 2}} \right)^x} - {\left( {{1 \over 6}} \right)^x} =  - 2x + 6.\)

Lời giải chi tiết:

Đặt \(f(x) = {3^x} - {\left( {{1 \over 3}} \right)^x} + {2^x} - {\left( {{1 \over 2}} \right)^x} - {\left( {{1 \over 6}} \right)^x}\) ;\(g(x) =  - 2x + 6\) . Dễ thấy \(f(x)\) đồng biến trên R (Xét dấu đao hàm) ; \(g(x)\)  nghịch biến trên R và \(f(1) = g(1) = 4\)

Với \(x > 1\) ta có \(f(x) > f(1) = g(1) > g(x)\) ;

Với \(x < 1\) ta có \(f(x) < f(1) = g(1) < g(x)\).

Vậy phương trình có nghiệm duy nhất \(x = 1\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài