Câu 2.94 trang 85 sách bài tập Giải tích 12 Nâng cao


Dùng phương pháp đặt ẩn phụ để giải các phương trình sau:

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Lựa chọn câu để xem lời giải nhanh hơn

Dùng phương pháp đặt ẩn phụ để giải các phương trình sau:

LG a

\({\left( {\sqrt {6 + \sqrt {35} } } \right)^x} + {\left( {\sqrt {6 - \sqrt {35} } } \right)^x} = 12;\)

Lời giải chi tiết:

\(x = 2\) và \(x =  - 2\)

Ta có: \(\sqrt {6 + \sqrt {35} } .\sqrt {6 - \sqrt {35} }  = 1\), đặt \(t = {\left( {\sqrt {6 + \sqrt {35} } } \right)^x}\left( {t > 0} \right)\) dẫn đến phương trình

\(t + {1 \over t} = 12\)  

\(\eqalign{
& \Leftrightarrow {t^2} - 12t + 1 = 0 \cr 
& \Leftrightarrow \left[ \matrix{
t = 6 + \sqrt {35} \hfill \cr 
t = 6 - \sqrt {35} \hfill \cr} \right. \cr 
& \Leftrightarrow \left[ \matrix{
{\left( {\sqrt {6 + \sqrt {35} } } \right)^x} = 6 + \sqrt {35} \hfill \cr 
{\left( {\sqrt {6 + \sqrt {35} } } \right)^x} = 6 - \sqrt {35} \hfill \cr} \right. \cr 
& \Leftrightarrow \left[ \matrix{
x = 2 \hfill \cr 
x = - 2 \hfill \cr} \right. \cr} \)

Vậy phương trình có nghiệm \(x = 2\) và \(x =  - 2\)

LG b

\({\log _2}(2{x^2} - 5) + {\log _{2{x^2} - 5}}4 = 3.\)

Lời giải chi tiết:

Tập xác định: 

\(D = \left( { - \infty ; - \sqrt {2,5} } \right) \cup \left( {\sqrt {2,5} ; + \infty } \right)\backslash \left\{ { \pm \sqrt 3 } \right\}\)

Đặt \(t = {\log _2}\left( {2{x^2} - 5} \right)\) với \(\left( {t \ne 0} \right)\) dẫn đến phương trình

\(t + {2 \over t} = 3\)

\(\eqalign{
& \Leftrightarrow {t^2} - 3t + 2 = 0 \cr 
& \Leftrightarrow \left[ \matrix{
t = 1 \hfill \cr 
t = 2 \hfill \cr} \right. \cr 
& \Leftrightarrow \left[ \matrix{
{\log _2}\left( {2{x^2} - 5} \right) = 1 \hfill \cr 
{\log _2}\left( {2{x^2} - 5} \right) = 2 \hfill \cr} \right. \cr 
& \Leftrightarrow \left[ \matrix{
2{x^2} - 5 = 2 \hfill \cr 
2{x^2} - 5 = 4 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x = \pm \sqrt {3,5} \hfill \cr 
x = \pm \sqrt {4,5} \hfill \cr} \right. \cr} \)

Vậy phương trình có nghiệm là \(x =  \pm \sqrt {3,5} \) và \(x =  \pm \sqrt {4,5} \)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí