Bài 11 trang 143 SGK Đại số và Giải tích 11


Giải bài 11 trang 143 SGK Đại số và Giải tích 11. Chọn mệnh đề đúng trong các mệnh đề sau:

Đề bài

Cho dãy số \((u_n)\) với : \(u_n = \sqrt 2 + (\sqrt2)^2+......+( \sqrt 2)^n\)

Chọn mệnh đề đúng trong các mệnh đề sau:

A. \(\lim {u_n} = \sqrt 2  + {(\sqrt 2 )^2} + ... + {(\sqrt 2 )^n}+... \) \(= {{\sqrt 2 } \over {1 - \sqrt 2 }}\)

B. \(\lim u_n = -∞\)

C. \(\lim u_n= +∞\)

D. Dãy số \((u_n)\) không có giới hạn khi \(n \rightarrow +∞\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

\((u_n)\) là tổng \(n\) số hạng đầu tiên của một cấp số nhân có số hạng đầu là \(u_1= \sqrt 2\) và công bội \(q = \sqrt 2\)

Lời giải chi tiết

+ Ta có \((u_n)\) là tổng \(n\) số hạng đầu tiên của một cấp số nhân có số hạng đầu là \(u_1= \sqrt 2\) và công bội \(q = \sqrt 2\) nên:

\(\eqalign{
& {u_n} = {{{u_1}(1 - {q^n})} \over {1 - q}} = {{\sqrt 2 \left[ {1 - {{(\sqrt 2 )}^n}} \right]} \over {1 - \sqrt 2 }}\cr&= {{\sqrt 2 \left[ {{{(\sqrt 2 )}^n} - 1} \right]} \over {\sqrt 2 - 1}} \cr
& \Rightarrow \lim {u_n} = \lim {{\sqrt 2 \left[ {{{(\sqrt 2 )}^n} - 1} \right]} \over {\sqrt 2 - 1}} = + \infty \cr} \)

(vì \(\sqrt 2 > 1\) nên \(\lim(\sqrt 2)^n= + ∞\).

Chọn đáp án C.

Chú ý:

Đây không phải cấp số nhân lùi vô hạn nên không áp dụng công thức A được.

 Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
3.8 trên 8 phiếu

Các bài liên quan: - Ôn tập chương IV - Giới hạn

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

>>KHOÁ NỀN TẢNG LỚP 12 DÀNH CHO 2K4 NĂM 2022 học sớm chiếm lợi thế luyện thi TN THPT & ĐH


Gửi bài