Bài 5 trang 147 Tài liệu dạy – học Toán 9 tập 1

Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Cho tam giác ABC nội tiếp đường tròn (O ; R) có AB

Đề bài

Cho tam giác ABC nội tiếp đường tròn (O ; R) có AB là đường kính (AC < BC). Đường thẳng song song với AC vẽ từ O cắt đường tròn (O) tại I ( A, C, I, B theo thứ tự).

a) Chứng minh rằng \(OI \bot BC\).

b) Tiếp tuyến với đường tròn (O) tại B cắt đường thẳng OI tại M. Chứng minh rằng MC là tiếp tuyến của (O).

c) Kẻ CH vuông góc với AB tại H, gọi K là giao điểm của AM với CH. Chứng minh rằng K là trung điểm của CH.

Phương pháp giải - Xem chi tiết

a) Sử dụng quan hệ từ vuông góc đến song song.

b) Chứng minh \(\Delta OMC = \Delta OMB\,\), từ đó chứng minh \(\angle OCM = {90^0}\).

c) Kéo dài AN cắt BM tại N. Chứng minh M là trung điểm của BN.

Áp dụng định lí Ta-lét.

Lời giải chi tiết

 

a) Do \(C\) thuộc đường tròn đường kính \(AB \Rightarrow \angle ACB = {90^0} \Rightarrow AC \bot BC\).

Mà \(OI//AC\,\left( {gt} \right) \Rightarrow OI \bot BC\).

b) Vì \(OI//AC\,\,\left( {gt} \right) \Rightarrow \angle MOC = \angle OCA\) (so le trong) ; \(\angle MOB = \angle OAC\)(đồng vị).

Mà \(\Delta OAC\) cân tại \(O\,\,\left( {OA = OC} \right) \Rightarrow \angle OCA = \angle OAC\)

\( \Rightarrow \angle MOC = \angle MOB\)

Xét \(\Delta OMC\) và \(\Delta OMB\) có :

\(\begin{array}{l}OB = OC = R\\\angle MOC = \angle MOB\,\,\left( {cmt} \right)\\OM\,\,chung\\ \Rightarrow \Delta OMC = \Delta OMB\,\,\left( {c.g.c} \right)\\ \Rightarrow \angle OCM = \angle OBM = {90^0}\end{array}\)

\( \Rightarrow MC \bot OC\) tại \(C\). Mà \(OC\) là bán kính của \(\left( O \right)\).

\( \Rightarrow MC\) là tiếp tuyến của \(\left( O \right)\).

c) Kéo dài AN cắt BM tại N.

Ta có \(OI \bot BC\,\,\left( {cmt} \right)\)\( \Rightarrow OM \bot BC\).

Lại có \(AC \bot BC\,\,\left( {cmt} \right) \Rightarrow AC//OM\) hay \(AN//BM\).

Xét tam giác ABN có :

\(O\) là trung điểm của \(AB\).

\(AN//OM\) ;

\( \Rightarrow M\) là trung điểm của \(BN\) (tính chất đường trung bình của tam giác) \( \Rightarrow BM = MN\).

Ta có : \(CH \bot AB;\,\,BN \bot AB \Rightarrow CH//BN\).

Áp dụng định lí Ta-let ta có : \(\dfrac{{KH}}{{BM}} = \dfrac{{AK}}{{AM}} = \dfrac{{KC}}{{MN}}\).

Mà \(BM = MN\,\,\left( {cmt} \right)\) \( \Rightarrow KH = AK\) \( \Rightarrow K\) là trung điểm của \(AH\,\,\left( {dpcm} \right)\).

 Loigiaihay.com

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com

Gửi văn hay nhận ngay phần thưởng