Bài 4 trang 48 Tài liệu dạy – học Toán 9 tập 1

Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Hãy xét tính đồng biến, nghịch biến của các hàm số sau :

Đề bài

Hãy xét tính đồng biến, nghịch biến của các hàm số sau :

a) \(y = \left( {\sqrt 3  - 1} \right)x + 2\);

b) \(y =  - \left( {2 + {m^2}} \right)x + 1\).

Phương pháp giải - Xem chi tiết

Hàm số \(y = ax + b,\,\,\left( {a \ne 0} \right)\) đồng biến trên R khi \(a > 0.\)

Hàm số nghịch biến trên R khi \(a < 0.\)

Lời giải chi tiết

a) \(y = \left( {\sqrt 3  - 1} \right)x + 2\)

Ta có: \(a = \sqrt 3  - 1 > 0\) nên hàm số \(y = \left( {\sqrt 3  - 1} \right)x + 2\) là hàm số đồng biến trên R.

b) \(y =  - \left( {2 + {m^2}} \right)x + 1\)

Ta có: \(2 + {m^2} > 0 \Rightarrow a =  - \left( {2 + {m^2}} \right) < 0,\)\(\,\forall m\) nên hàm số \(y =  - \left( {2 + {m^2}} \right)x + 1\) là hàm số nghịch biến trên R.

Loigiaihay.com

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com

Gửi văn hay nhận ngay phần thưởng