Giải toán 11, giải bài tập toán lớp 11 đầy đủ đại số và giải tích, hình học
Bài 1. Định nghĩa và ý nghĩa của đạo hàm
Bài 3 trang 156 SGK Đại số và Giải tích 11>
Tính (bằng định nghĩa) đạo hàm của mỗi hàm số sau tại các điểm đã chỉ ra
Video hướng dẫn giải
Tính (bằng định nghĩa) đạo hàm của mỗi hàm số sau tại các điểm đã chỉ ra:
LG a
\(y = x^2+ x\) tại \(x_0= 1\)
Phương pháp giải:
Bước 1: Giả sử \(\Delta x\) là số gia của đối số tại \(x_0\), tính \(\Delta y = f\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right)\).
Bước 2: Lập tỉ số \(\dfrac{{\Delta y}}{{\Delta x}}\).
Bước 3: Tìm \(\mathop {\lim }\limits_{\Delta x \to 0} \dfrac{{\Delta y}}{{\Delta x}}\).
Kết luận \(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{\Delta x \to 0} \dfrac{{\Delta y}}{{\Delta x}}\).
Lời giải chi tiết:
Giả sử \(∆x\) là số gia của số đối tại \(x_0 = 1\). Ta có:
\(\begin{array}{l}
\Delta y = f\left( {1 + \Delta x} \right) - f\left( 1 \right)\\
\,\,\,\,\,\, = {\left( {1 + \Delta x} \right)^2} + \left( {1 + \Delta x} \right) - {1^2} - 1\\
\,\,\,\,\, = 1 + 2\Delta x + {\left( {\Delta x} \right)^2} + 1 + \Delta x - 2\\
\,\,\,\,\, = \Delta x\left( {\Delta x + 3} \right)\\
\Rightarrow \dfrac{{\Delta y}}{{\Delta x}} = \Delta x + 3\\
\Rightarrow \mathop {\lim }\limits_{\Delta x \to 0} \dfrac{{\Delta y}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} \left( {\Delta x + 3} \right) = 3
\end{array}\)
Vậy \(f'(1) = 3\).
Cách khác:
\(\begin{array}{l}
f\left( x \right) = {x^2} + x \Rightarrow f\left( 1 \right) = 2\\
\Rightarrow \mathop {\lim }\limits_{x \to 1} \dfrac{{f\left( x \right) - f\left( 1 \right)}}{{x - 1}}\\
= \mathop {\lim }\limits_{x \to 1} \dfrac{{{x^2} + x - 2}}{{x - 1}}\\
= \mathop {\lim }\limits_{x \to 1} \dfrac{{\left( {x - 1} \right)\left( {x + 2} \right)}}{{x - 1}}\\
= \mathop {\lim }\limits_{x \to 1} \left( {x + 2} \right)\\
= 1 + 2\\
= 3\\
\Rightarrow f'\left( 1 \right) = 3
\end{array}\)
LG b
\(y = \dfrac{1}{x}\) tại \(x_0= 2\)
Lời giải chi tiết:
Giả sử \(∆x\) là số gia của số đối tại \(x_0= 2\). Ta có:
\(\begin{array}{l}
\Delta y = f\left( {2 + \Delta x} \right) - f\left( 2 \right)\\
\,\,\,\,\,\,\, = \dfrac{1}{{2 + \Delta x}} - \dfrac{1}{2}\\
\,\,\,\,\,\,\, = \dfrac{{2 - 2 - \Delta x}}{{2\left( {2 + \Delta x} \right)}} = \dfrac{{ - \Delta x}}{{2\left( {2 + \Delta x} \right)}}\\
\Rightarrow \dfrac{{\Delta y}}{{\Delta x}} = \dfrac{{ - 1}}{{2\left( {2 + \Delta x} \right)}}\\
\Rightarrow \mathop {\lim }\limits_{\Delta x \to 0} \dfrac{{\Delta y}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} \left( {\dfrac{{ - 1}}{{2\left( {2 + \Delta x} \right)}}} \right) = \dfrac{{ - 1}}{{2.2}} = - \dfrac{1}{4}
\end{array}\)
Vậy \(f'(2) = - \dfrac{1}{4}\).
Cách khác:
\(\begin{array}{l}
f\left( x \right) = \dfrac{1}{x} \Rightarrow f\left( 2 \right) = \dfrac{1}{2}\\
\Rightarrow \mathop {\lim }\limits_{x \to 2} \dfrac{{f\left( x \right) - f\left( 2 \right)}}{{x - 2}}\\
= \mathop {\lim }\limits_{x \to 2} \dfrac{{\dfrac{1}{x} - \dfrac{1}{2}}}{{x - 2}}\\
= \mathop {\lim }\limits_{x \to 2} \dfrac{{\dfrac{{2 - x}}{{2x}}}}{{ - \left( {2 - x} \right)}}\\
= \mathop {\lim }\limits_{x \to 2} \left( { - \dfrac{1}{{2x}}} \right)\\
= - \dfrac{1}{{2.2}} = - \dfrac{1}{4}\\
\Rightarrow f'\left( 2 \right) = - \dfrac{1}{4}
\end{array}\)
LG c
\(y = \dfrac{x+1}{x-1}\) tại \(x_0 = 0\)
Lời giải chi tiết:
Giả sử \(∆x\) là số gia của số đối tại \(x_0= 0\).Ta có:
\(\begin{array}{l}
\Delta y = f\left( {\Delta x} \right) - f\left( 0 \right)\\
\,\,\,\,\,\,\, = \dfrac{{\Delta x + 1}}{{\Delta x - 1}} - \dfrac{{0 + 1}}{{0 - 1}}\\
\,\,\,\,\,\,\, = \dfrac{{\Delta x + 1}}{{\Delta x - 1}} + 1\\
\,\,\,\,\,\,\, = \dfrac{{\Delta x + 1 + \Delta x - 1}}{{\Delta x - 1}} = \dfrac{{2\Delta x}}{{\Delta x - 1}}\\
\Rightarrow \dfrac{{\Delta y}}{{\Delta x}} = \dfrac{2}{{\Delta x - 1}}\\
\Rightarrow \mathop {\lim }\limits_{\Delta x \to 0} \dfrac{{\Delta y}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} \left( {\dfrac{2}{{\Delta x - 1}}} \right) = \dfrac{2}{{ - 1}} = - 2
\end{array}\)
Vậy \(f'(0) = -2\).
Cách khác:
\(\begin{array}{l}
f\left( x \right) = \dfrac{{x + 1}}{{x - 1}} \Rightarrow f\left( 0 \right) = - 1\\
\Rightarrow \mathop {\lim }\limits_{x \to 0} \dfrac{{f\left( x \right) - f\left( 0 \right)}}{{x - 0}}\\
= \mathop {\lim }\limits_{x \to 0} \dfrac{{\dfrac{{x + 1}}{{x - 1}} + 1}}{x}\\
= \mathop {\lim }\limits_{x \to 0} \dfrac{{\dfrac{{x + 1 + x - 1}}{{x - 1}}}}{x}\\
= \mathop {\lim }\limits_{x \to 0} \dfrac{{\dfrac{{2x}}{{x - 1}}}}{x}\\
= \mathop {\lim }\limits_{x \to 0} \dfrac{2}{{x - 1}}\\
= \dfrac{2}{{0 - 1}} = - 2\\
\Rightarrow f'\left( 0 \right) = - 2
\end{array}\)
Loigiaihay.com




