Bài tập trắc nghiệm trang 209, 210, 211 SBT đại số và giải tích 11


Giải bài tập trắc nghiệm trang 209, 210, 211 sách bài tập đại số và giải tích 11

Lựa chọn câu để xem lời giải nhanh hơn

Chọn đáp án đúng:

5.70

Tìm đạo hàm của hàm số \(y = \dfrac{{\sin {x^2}}}{x}\)

Lời giải chi tiết:

\(\begin{array}{l}y' = \dfrac{{\left( {\sin {x^2}} \right)'.x - \sin {x^2}.\left( x \right)'}}{{{x^2}}}\\ = \dfrac{{\left( {{x^2}} \right)'\cos {x^2}.x - \sin {x^2}}}{{{x^2}}}\\ = \dfrac{{2x\cos {x^2}.x - \sin {x^2}}}{{{x^2}}}\\ = \dfrac{{2{x^2}\cos {x^2} - \sin {x^2}}}{{{x^2}}}\end{array}\)

Chọn đáp án: A

5.71

Cho hàm số \(y = \cos \dfrac{x}{{x + 1}}\). Tìm y'

Lời giải chi tiết:

\(\begin{array}{l}y' = \left( {\dfrac{x}{{x + 1}}} \right)'\left( { - \sin \dfrac{x}{{x + 1}}} \right)\\ = \dfrac{{\left( x \right)'\left( {x + 1} \right) - x\left( {x + 1} \right)'}}{{{{\left( {x + 1} \right)}^2}}}\left( { - \sin \dfrac{x}{{x + 1}}} \right)\\ = \dfrac{{x + 1 - x}}{{{{\left( {x + 1} \right)}^2}}}\left( { - \sin \dfrac{x}{{x + 1}}} \right)\\ = \dfrac{{ - \sin \dfrac{x}{{x + 1}}}}{{{{\left( {x + 1} \right)}^2}}}\end{array}\)

Chọn đáp án: C

5.72

Tìm đạo hàm của hàm số y = tan2 x – cot x2

 

Lời giải chi tiết:

\(\begin{array}{l}y' = 2\tan x\left( {\tan x} \right)' - \left( {{x^2}} \right)'.\left( { - \dfrac{1}{{{{\sin }^2}{x^2}}}} \right)\\ = 2\tan x.\dfrac{1}{{{{\cos }^2}x}} + \dfrac{{2x}}{{{{\sin }^2}{x^2}}}\\ = 2.\dfrac{{\sin x}}{{\cos x}}.\dfrac{1}{{{{\cos }^2}x}} + \dfrac{{2x}}{{{{\sin }^2}{x^2}}}\\ = \dfrac{{2\sin x}}{{{{\cos }^3}x}} + \dfrac{{2x}}{{{{\sin }^2}{x^2}}}\end{array}\)

Chọn đáp án: D

5.73

Cho \(f\left( t \right) = \dfrac{{\cos t}}{{1 - \sin t}}\). Tính f'(π/6)

A. -2         B. -3         C. 2         D. 5

Lời giải chi tiết:

\(\begin{array}{l}f'\left( t \right)\\ = \dfrac{{\left( {\cos t} \right)'\left( {1 - \sin t} \right) - \cos t.\left( {1 - \sin t} \right)'}}{{{{\left( {1 - \sin t} \right)}^2}}}\\ = \dfrac{{ - \sin t\left( {1 - \sin t} \right) - \cos t\left( { - \cos t} \right)}}{{{{\left( {1 - \sin t} \right)}^2}}}\\ = \dfrac{{ - \sin t + {{\sin }^2}t + {{\cos }^2}t}}{{{{\left( {1 - \sin t} \right)}^2}}}\\ = \dfrac{{ - \sin t + 1}}{{{{\left( {1 - \sin t} \right)}^2}}}\\ = \dfrac{1}{{1 - \sin t}}\\ \Rightarrow f'\left( {\dfrac{\pi }{6}} \right) = \dfrac{1}{{1 - \sin \dfrac{\pi }{6}}}\\ = \dfrac{1}{{1 - \dfrac{1}{2}}} = 2\end{array}\)

Chọn đáp án: C

5.74

Tìm đạo hàm của hàm số y = (3 - sinx)3

A. 3(3 - sinx)

B. -3(3 - sinx)2cosx

C. -3(3 - sinx).cosx

D. -3(3 - sinx).cos2x

Lời giải chi tiết:

\(\begin{array}{l}y' = 3{\left( {3 - \sin x} \right)^2}\left( {3 - \sin x} \right)'\\ = 3{\left( {3 - \sin x} \right)^2}\left( {0 - \cos x} \right)\\ =  - 3{\left( {3 - \sin x} \right)^2}\cos x\end{array}\)

Chọn đáp án: B

5.75

Cho \(f\left( x \right) = \sqrt {1 + 2\tan x} \). Tính f'(π/4)

Lời giải chi tiết:

\(\begin{array}{l}f'\left( x \right) = \dfrac{{\left( {1 + 2\tan x} \right)'}}{{2\sqrt {1 + 2\tan x} }}\\ = \dfrac{{2.\left( {\tan x} \right)'}}{{2\sqrt {1 + 2\tan x} }}\\ = \dfrac{{\dfrac{1}{{{{\cos }^2}x}}}}{{\sqrt {1 + 2\tan x} }}\\ = \dfrac{1}{{{{\cos }^2}x\sqrt {1 + 2\tan x} }}\\ \Rightarrow f'\left( {\dfrac{\pi }{4}} \right) = \dfrac{1}{{{{\cos }^2}\dfrac{\pi }{4}\sqrt {1 + 2\tan \dfrac{\pi }{4}} }}\\ = \dfrac{1}{{{{\left( {\dfrac{{\sqrt 2 }}{2}} \right)}^2}.\sqrt {1 + 2.1} }} = \dfrac{2}{{\sqrt 3 }} = \dfrac{{2\sqrt 3 }}{3}\end{array}\)

Chọn đáp án: D

5.76

Tìm đạo hàm của \(g\left( \varphi  \right) = \dfrac{{\cos \varphi  + \sin \varphi }}{{1 - \cos \varphi }}\)

Lời giải chi tiết:

\(\begin{array}{l}g'\left( \varphi  \right)\\ = \dfrac{{\left( {\cos \varphi  + \sin \varphi } \right)'\left( {1 - \cos \varphi } \right) - \left( {\cos \varphi  + \sin \varphi } \right)\left( {1 - \cos \varphi } \right)'}}{{{{\left( {1 - \cos \varphi } \right)}^2}}}\\ = \dfrac{{\left( { - \sin \varphi  + \cos \varphi } \right)\left( {1 - \cos \varphi } \right) - \left( {\cos \varphi  + \sin \varphi } \right)\left( { - \left( { - \sin \varphi } \right)} \right)}}{{{{\left( {1 - \cos \varphi } \right)}^2}}}\\ = \dfrac{{ - \sin \varphi  + \cos \varphi  + \sin \varphi \cos \varphi  - {{\cos }^2}\varphi  - \cos \varphi \sin \varphi  - {{\sin }^2}\varphi }}{{{{\left( {1 - \cos \varphi } \right)}^2}}}\\ = \dfrac{{ - \sin \varphi  + \cos \varphi  - \left( {{{\cos }^2}\varphi  + {{\sin }^2}\varphi } \right)}}{{{{\left( {1 - \cos \varphi } \right)}^2}}}\\ = \dfrac{{\cos \varphi  - \sin \varphi  - 1}}{{{{\left( {1 - \cos \varphi } \right)}^2}}}\end{array}\)

Chọn đáp án: A

5.77

Cho \(y = \cot \sqrt {1 + {x^2}} \). Tính y'(1)

Lời giải chi tiết:

\(\begin{array}{l}y' = \left( {\sqrt {1 + {x^2}} } \right)'.\left( { - \dfrac{1}{{{{\sin }^2}\sqrt {1 + {x^2}} }}} \right)\\ = \dfrac{{\left( {1 + {x^2}} \right)'}}{{2\sqrt {1 + {x^2}} }}.\left( { - \dfrac{1}{{{{\sin }^2}\sqrt {1 + {x^2}} }}} \right)\\ = \dfrac{{2x}}{{2\sqrt {1 + {x^2}} }}.\left( { - \dfrac{1}{{{{\sin }^2}\sqrt {1 + {x^2}} }}} \right)\\ =  - \dfrac{x}{{\sqrt {1 + {x^2}} .{{\sin }^2}\sqrt {1 + {x^2}} }}\\ \Rightarrow y'\left( 1 \right) =  - \dfrac{1}{{\sqrt 2 {{\sin }^2}\sqrt 2 }}\end{array}\)

Chọn đáp án: B

5.78

Cho f(x) = 5x2 - 16√x + 7. Tính f'(4); f'(1/4)

A. 36; -27/2

B. -36; 27/2

C. 1; 35

D. 36; -2

Lời giải chi tiết:

\(\begin{array}{l}f'\left( x \right) = 5.2x - 16.\dfrac{1}{{2\sqrt x }}\\ = 10x - \dfrac{8}{{\sqrt x }}\\ \Rightarrow f'\left( 4 \right) = 10.4 - \dfrac{8}{{\sqrt 4 }} = 36\\f'\left( {\dfrac{1}{4}} \right) = 10.\dfrac{1}{4} - \dfrac{8}{{\sqrt {\dfrac{1}{4}} }} =  - \dfrac{{27}}{2}\end{array}\)

Chọn đáp án: A

5.79

Cho g(x) = x2sin(x - 2). Tính g'(2).

A. -2            B. 4           C. 2            D. 1

Lời giải chi tiết:

\(\begin{array}{l}
g'\left( x \right) = \left( {{x^2}} \right)'\sin \left( {x - 2} \right)\\
+ {x^2}\left[ {\sin \left( {x - 2} \right)} \right]'\\
= 2x\sin \left( {x - 2} \right) + {x^2}.\cos \left( {x - 2} \right)\\
\Rightarrow g'\left( 2 \right) = 2.2\sin 0 + {2^2}\cos 0\\
= 0 + 4.1 = 4
\end{array}\)

Chọn đáp án: B

5.80

Tìm đạo hàm của hàm số \(y = \tan \dfrac{x}{2} - \cot \dfrac{x}{2}\)

Lời giải chi tiết:

\(\begin{array}{l}y' = \left( {\dfrac{x}{2}} \right)'.\dfrac{1}{{{{\cos }^2}\dfrac{x}{2}}} - \left( {\dfrac{x}{2}} \right)'.\left( { - \dfrac{1}{{{{\sin }^2}\dfrac{x}{2}}}} \right)\\ = \dfrac{1}{2}.\dfrac{1}{{{{\cos }^2}\dfrac{x}{2}}} + \dfrac{1}{2}.\dfrac{1}{{{{\sin }^2}\dfrac{x}{2}}}\\ = \dfrac{1}{2}\left( {\dfrac{1}{{{{\cos }^2}\dfrac{x}{2}}} + \dfrac{1}{{{{\sin }^2}\dfrac{x}{2}}}} \right)\\ = \dfrac{1}{2}.\dfrac{{{{\sin }^2}\dfrac{x}{2} + {{\cos }^2}\dfrac{x}{2}}}{{{{\cos }^2}\dfrac{x}{2}.{{\sin }^2}\dfrac{x}{2}}}\\ = \dfrac{2}{{4{{\cos }^2}\dfrac{x}{2}.{{\sin }^2}\dfrac{x}{2}}}\\ = \dfrac{2}{{{{\left( {2\cos \dfrac{x}{2}\sin \dfrac{x}{2}} \right)}^2}}}\\ = \dfrac{2}{{{{\sin }^2}x}}\end{array}\)

Chọn đáp án: D

5.81

Giải phương trình f'(x) = g(x), biết

g(x) = sinx và f(x) = (2 - x2)cosx + 2x.sinx.

Lời giải chi tiết:

\(\begin{array}{l}f'\left( x \right)\\ = \left( {2 - {x^2}} \right)'\cos x + \left( {2 - {x^2}} \right)\left( {\cos x} \right)'\\ + 2\left( {\left( x \right)'\sin x + x\left( {\sin x} \right)'} \right)\\ =  - 2x\cos x + \left( {2 - {x^2}} \right)\left( { - \sin x} \right)\\ + 2\left( {\sin x + x\cos x} \right)\\ =  - 2x\cos x - 2\sin x + {x^2}\sin x\\ + 2\sin x + 2x\cos x\\ = {x^2}\sin x\\ \Rightarrow f'\left( x \right) = {x^2}\sin x\\f'\left( x \right) = g\left( x \right)\\ \Leftrightarrow {x^2}\sin x = \sin x\\ \Leftrightarrow {x^2}\sin x - \sin x = 0\\ \Leftrightarrow \left( {{x^2} - 1} \right)\sin x = 0\\ \Leftrightarrow \left[ \begin{array}{l}{x^2} - 1 = 0\\\sin x = 0\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x =  \pm 1\\x = k\pi ,k \in \mathbb{Z}\end{array} \right.\end{array}\)

Chọn đáp án: C

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.


Hỏi bài