Bài tập trắc nghiệm trang 209, 210, 211 SBT đại số và giải tích 11


Giải bài tập trắc nghiệm trang 209, 210, 211 sách bài tập đại số và giải tích 11

Lựa chọn câu để xem lời giải nhanh hơn

Chọn đáp án đúng:

5.70

Tìm đạo hàm của hàm số \(y = \dfrac{{\sin {x^2}}}{x}\)

Lời giải chi tiết:

\(\begin{array}{l}y' = \dfrac{{\left( {\sin {x^2}} \right)'.x - \sin {x^2}.\left( x \right)'}}{{{x^2}}}\\ = \dfrac{{\left( {{x^2}} \right)'\cos {x^2}.x - \sin {x^2}}}{{{x^2}}}\\ = \dfrac{{2x\cos {x^2}.x - \sin {x^2}}}{{{x^2}}}\\ = \dfrac{{2{x^2}\cos {x^2} - \sin {x^2}}}{{{x^2}}}\end{array}\)

Chọn đáp án: A

5.71

Cho hàm số \(y = \cos \dfrac{x}{{x + 1}}\). Tìm y'

Lời giải chi tiết:

\(\begin{array}{l}y' = \left( {\dfrac{x}{{x + 1}}} \right)'\left( { - \sin \dfrac{x}{{x + 1}}} \right)\\ = \dfrac{{\left( x \right)'\left( {x + 1} \right) - x\left( {x + 1} \right)'}}{{{{\left( {x + 1} \right)}^2}}}\left( { - \sin \dfrac{x}{{x + 1}}} \right)\\ = \dfrac{{x + 1 - x}}{{{{\left( {x + 1} \right)}^2}}}\left( { - \sin \dfrac{x}{{x + 1}}} \right)\\ = \dfrac{{ - \sin \dfrac{x}{{x + 1}}}}{{{{\left( {x + 1} \right)}^2}}}\end{array}\)

Chọn đáp án: C

5.72

Tìm đạo hàm của hàm số y = tan2 x – cot x2

 

Lời giải chi tiết:

\(\begin{array}{l}y' = 2\tan x\left( {\tan x} \right)' - \left( {{x^2}} \right)'.\left( { - \dfrac{1}{{{{\sin }^2}{x^2}}}} \right)\\ = 2\tan x.\dfrac{1}{{{{\cos }^2}x}} + \dfrac{{2x}}{{{{\sin }^2}{x^2}}}\\ = 2.\dfrac{{\sin x}}{{\cos x}}.\dfrac{1}{{{{\cos }^2}x}} + \dfrac{{2x}}{{{{\sin }^2}{x^2}}}\\ = \dfrac{{2\sin x}}{{{{\cos }^3}x}} + \dfrac{{2x}}{{{{\sin }^2}{x^2}}}\end{array}\)

Chọn đáp án: D

5.73

Cho \(f\left( t \right) = \dfrac{{\cos t}}{{1 - \sin t}}\). Tính f'(π/6)

A. -2         B. -3         C. 2         D. 5

Lời giải chi tiết:

\(\begin{array}{l}f'\left( t \right)\\ = \dfrac{{\left( {\cos t} \right)'\left( {1 - \sin t} \right) - \cos t.\left( {1 - \sin t} \right)'}}{{{{\left( {1 - \sin t} \right)}^2}}}\\ = \dfrac{{ - \sin t\left( {1 - \sin t} \right) - \cos t\left( { - \cos t} \right)}}{{{{\left( {1 - \sin t} \right)}^2}}}\\ = \dfrac{{ - \sin t + {{\sin }^2}t + {{\cos }^2}t}}{{{{\left( {1 - \sin t} \right)}^2}}}\\ = \dfrac{{ - \sin t + 1}}{{{{\left( {1 - \sin t} \right)}^2}}}\\ = \dfrac{1}{{1 - \sin t}}\\ \Rightarrow f'\left( {\dfrac{\pi }{6}} \right) = \dfrac{1}{{1 - \sin \dfrac{\pi }{6}}}\\ = \dfrac{1}{{1 - \dfrac{1}{2}}} = 2\end{array}\)

Chọn đáp án: C

5.74

Tìm đạo hàm của hàm số y = (3 - sinx)3

A. 3(3 - sinx)

B. -3(3 - sinx)2cosx

C. -3(3 - sinx).cosx

D. -3(3 - sinx).cos2x

Lời giải chi tiết:

\(\begin{array}{l}y' = 3{\left( {3 - \sin x} \right)^2}\left( {3 - \sin x} \right)'\\ = 3{\left( {3 - \sin x} \right)^2}\left( {0 - \cos x} \right)\\ =  - 3{\left( {3 - \sin x} \right)^2}\cos x\end{array}\)

Chọn đáp án: B

5.75

Cho \(f\left( x \right) = \sqrt {1 + 2\tan x} \). Tính f'(π/4)

Lời giải chi tiết:

\(\begin{array}{l}f'\left( x \right) = \dfrac{{\left( {1 + 2\tan x} \right)'}}{{2\sqrt {1 + 2\tan x} }}\\ = \dfrac{{2.\left( {\tan x} \right)'}}{{2\sqrt {1 + 2\tan x} }}\\ = \dfrac{{\dfrac{1}{{{{\cos }^2}x}}}}{{\sqrt {1 + 2\tan x} }}\\ = \dfrac{1}{{{{\cos }^2}x\sqrt {1 + 2\tan x} }}\\ \Rightarrow f'\left( {\dfrac{\pi }{4}} \right) = \dfrac{1}{{{{\cos }^2}\dfrac{\pi }{4}\sqrt {1 + 2\tan \dfrac{\pi }{4}} }}\\ = \dfrac{1}{{{{\left( {\dfrac{{\sqrt 2 }}{2}} \right)}^2}.\sqrt {1 + 2.1} }} = \dfrac{2}{{\sqrt 3 }} = \dfrac{{2\sqrt 3 }}{3}\end{array}\)

Chọn đáp án: D

5.76

Tìm đạo hàm của \(g\left( \varphi  \right) = \dfrac{{\cos \varphi  + \sin \varphi }}{{1 - \cos \varphi }}\)

Lời giải chi tiết:

\(\begin{array}{l}g'\left( \varphi  \right)\\ = \dfrac{{\left( {\cos \varphi  + \sin \varphi } \right)'\left( {1 - \cos \varphi } \right) - \left( {\cos \varphi  + \sin \varphi } \right)\left( {1 - \cos \varphi } \right)'}}{{{{\left( {1 - \cos \varphi } \right)}^2}}}\\ = \dfrac{{\left( { - \sin \varphi  + \cos \varphi } \right)\left( {1 - \cos \varphi } \right) - \left( {\cos \varphi  + \sin \varphi } \right)\left( { - \left( { - \sin \varphi } \right)} \right)}}{{{{\left( {1 - \cos \varphi } \right)}^2}}}\\ = \dfrac{{ - \sin \varphi  + \cos \varphi  + \sin \varphi \cos \varphi  - {{\cos }^2}\varphi  - \cos \varphi \sin \varphi  - {{\sin }^2}\varphi }}{{{{\left( {1 - \cos \varphi } \right)}^2}}}\\ = \dfrac{{ - \sin \varphi  + \cos \varphi  - \left( {{{\cos }^2}\varphi  + {{\sin }^2}\varphi } \right)}}{{{{\left( {1 - \cos \varphi } \right)}^2}}}\\ = \dfrac{{\cos \varphi  - \sin \varphi  - 1}}{{{{\left( {1 - \cos \varphi } \right)}^2}}}\end{array}\)

Chọn đáp án: A

5.77

Cho \(y = \cot \sqrt {1 + {x^2}} \). Tính y'(1)

Lời giải chi tiết:

\(\begin{array}{l}y' = \left( {\sqrt {1 + {x^2}} } \right)'.\left( { - \dfrac{1}{{{{\sin }^2}\sqrt {1 + {x^2}} }}} \right)\\ = \dfrac{{\left( {1 + {x^2}} \right)'}}{{2\sqrt {1 + {x^2}} }}.\left( { - \dfrac{1}{{{{\sin }^2}\sqrt {1 + {x^2}} }}} \right)\\ = \dfrac{{2x}}{{2\sqrt {1 + {x^2}} }}.\left( { - \dfrac{1}{{{{\sin }^2}\sqrt {1 + {x^2}} }}} \right)\\ =  - \dfrac{x}{{\sqrt {1 + {x^2}} .{{\sin }^2}\sqrt {1 + {x^2}} }}\\ \Rightarrow y'\left( 1 \right) =  - \dfrac{1}{{\sqrt 2 {{\sin }^2}\sqrt 2 }}\end{array}\)

Chọn đáp án: B

5.78

Cho f(x) = 5x2 - 16√x + 7. Tính f'(4); f'(1/4)

A. 36; -27/2

B. -36; 27/2

C. 1; 35

D. 36; -2

Lời giải chi tiết:

\(\begin{array}{l}f'\left( x \right) = 5.2x - 16.\dfrac{1}{{2\sqrt x }}\\ = 10x - \dfrac{8}{{\sqrt x }}\\ \Rightarrow f'\left( 4 \right) = 10.4 - \dfrac{8}{{\sqrt 4 }} = 36\\f'\left( {\dfrac{1}{4}} \right) = 10.\dfrac{1}{4} - \dfrac{8}{{\sqrt {\dfrac{1}{4}} }} =  - \dfrac{{27}}{2}\end{array}\)

Chọn đáp án: A

5.79

Cho g(x) = x2sin(x - 2). Tính g'(2).

A. -2            B. 4           C. 2            D. 1

Lời giải chi tiết:

\(\begin{array}{l}
g'\left( x \right) = \left( {{x^2}} \right)'\sin \left( {x - 2} \right)\\
+ {x^2}\left[ {\sin \left( {x - 2} \right)} \right]'\\
= 2x\sin \left( {x - 2} \right) + {x^2}.\cos \left( {x - 2} \right)\\
\Rightarrow g'\left( 2 \right) = 2.2\sin 0 + {2^2}\cos 0\\
= 0 + 4.1 = 4
\end{array}\)

Chọn đáp án: B

5.80

Tìm đạo hàm của hàm số \(y = \tan \dfrac{x}{2} - \cot \dfrac{x}{2}\)

Lời giải chi tiết:

\(\begin{array}{l}y' = \left( {\dfrac{x}{2}} \right)'.\dfrac{1}{{{{\cos }^2}\dfrac{x}{2}}} - \left( {\dfrac{x}{2}} \right)'.\left( { - \dfrac{1}{{{{\sin }^2}\dfrac{x}{2}}}} \right)\\ = \dfrac{1}{2}.\dfrac{1}{{{{\cos }^2}\dfrac{x}{2}}} + \dfrac{1}{2}.\dfrac{1}{{{{\sin }^2}\dfrac{x}{2}}}\\ = \dfrac{1}{2}\left( {\dfrac{1}{{{{\cos }^2}\dfrac{x}{2}}} + \dfrac{1}{{{{\sin }^2}\dfrac{x}{2}}}} \right)\\ = \dfrac{1}{2}.\dfrac{{{{\sin }^2}\dfrac{x}{2} + {{\cos }^2}\dfrac{x}{2}}}{{{{\cos }^2}\dfrac{x}{2}.{{\sin }^2}\dfrac{x}{2}}}\\ = \dfrac{2}{{4{{\cos }^2}\dfrac{x}{2}.{{\sin }^2}\dfrac{x}{2}}}\\ = \dfrac{2}{{{{\left( {2\cos \dfrac{x}{2}\sin \dfrac{x}{2}} \right)}^2}}}\\ = \dfrac{2}{{{{\sin }^2}x}}\end{array}\)

Chọn đáp án: D

5.81

Giải phương trình f'(x) = g(x), biết

g(x) = sinx và f(x) = (2 - x2)cosx + 2x.sinx.

Lời giải chi tiết:

\(\begin{array}{l}f'\left( x \right)\\ = \left( {2 - {x^2}} \right)'\cos x + \left( {2 - {x^2}} \right)\left( {\cos x} \right)'\\ + 2\left( {\left( x \right)'\sin x + x\left( {\sin x} \right)'} \right)\\ =  - 2x\cos x + \left( {2 - {x^2}} \right)\left( { - \sin x} \right)\\ + 2\left( {\sin x + x\cos x} \right)\\ =  - 2x\cos x - 2\sin x + {x^2}\sin x\\ + 2\sin x + 2x\cos x\\ = {x^2}\sin x\\ \Rightarrow f'\left( x \right) = {x^2}\sin x\\f'\left( x \right) = g\left( x \right)\\ \Leftrightarrow {x^2}\sin x = \sin x\\ \Leftrightarrow {x^2}\sin x - \sin x = 0\\ \Leftrightarrow \left( {{x^2} - 1} \right)\sin x = 0\\ \Leftrightarrow \left[ \begin{array}{l}{x^2} - 1 = 0\\\sin x = 0\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x =  \pm 1\\x = k\pi ,k \in \mathbb{Z}\end{array} \right.\end{array}\)

Chọn đáp án: C

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí