Bài 5.48 trang 207 SBT đại số và giải tích 11


Giải bài 5.48 trang 207 sách bài tập đại số và giải tích 11. Giải phương trình...

Lựa chọn câu để xem lời giải nhanh hơn

Giải phương trình \(f'\left( x \right) = 0,\) biết rằng

LG a

\(f\left( x \right) = 3x + {{60} \over x} - {{64} \over {{x^3}}} + 5\)

Lời giải chi tiết:

\(\begin{array}{l}
f'\left( x \right) = 3 - \dfrac{{60}}{{{x^2}}} - \dfrac{{64.\left( { - 3{x^2}} \right)}}{{{x^6}}}\\
= 3 - \dfrac{{60}}{{{x^2}}} + \dfrac{{192}}{{{x^4}}}\\
= \dfrac{{3{x^4} - 60{x^2} + 192}}{{{x^4}}}\\
f'\left( x \right) = 0\\
\Leftrightarrow \dfrac{{3{x^4} - 60{x^2} + 192}}{{{x^4}}} = 0\\
\Leftrightarrow 3{x^4} - 60{x^2} + 192 = 0\\
\Leftrightarrow \left[ \begin{array}{l}
{x^2} = 16\\
{x^2} = 4
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x = \pm 4\\
x = \pm 2
\end{array} \right.
\end{array}\)

Vậy \(x\in\left\{ { \pm 2; \pm 4} \right\}.\)

LG b

\(\displaystyle f\left( x \right) = {{\sin 3x} \over 3} + \cos x\) \(\displaystyle - \sqrt 3 \left( {\sin x + {{\cos 3x} \over 3}} \right).\)

Lời giải chi tiết:

\(\begin{array}{l}
f'\left( x \right)\\
= \frac{{3\cos 3x}}{3} - \sin x - \sqrt 3 \left( {\cos x + \frac{{ - 3\sin 3x}}{3}} \right)\\
= \cos 3x - \sin x - \sqrt 3 \left( {\cos x - \sin 3x} \right)\\
= \cos 3x + \sqrt 3 \sin 3x - \sin x - \sqrt 3 \cos x\\
f'\left( x \right) = 0\\
\Leftrightarrow \cos 3x + \sqrt 3 \sin 3x - \sin x - \sqrt 3 \cos x = 0\\
\Leftrightarrow \cos 3x + \sqrt 3 \sin 3x = \sin x + \sqrt 3 \cos x\\
\Leftrightarrow \frac{1}{2}\cos 3x + \frac{{\sqrt 3 }}{2}\sin 3x = \frac{1}{2}\sin x + \frac{{\sqrt 3 }}{2}\cos x\\
\Leftrightarrow \cos \left( {3x - \frac{\pi }{3}} \right) = \cos \left( {x - \frac{\pi }{6}} \right)\\
\Leftrightarrow \left[ \begin{array}{l}
3x - \frac{\pi }{3} = x - \frac{\pi }{6} + k2\pi \\
3x - \frac{\pi }{3} = - x + \frac{\pi }{6} + k2\pi
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
2x = \frac{\pi }{6} + k2\pi \\
4x = \frac{\pi }{2} + k2\pi
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = \frac{\pi }{{12}} + k\pi \\
x = \frac{\pi }{8} + \frac{{k\pi }}{2}
\end{array} \right.
\end{array}\)

 Loigiaihay.com


Bình chọn:
4.2 trên 6 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

>> Luyện thi TN THPT & ĐH năm 2024 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.