Bài 5.41 trang 207 SBT đại số và giải tích 11


Đề bài

Tìm đạo hàm của hàm số sau:

\(y = {2 \over {\cos \left( {{\pi  \over 6} - 5x} \right)}}.\)

Lời giải chi tiết

\(\begin{array}{l}
y' = \dfrac{{ - 2\left[ {\cos \left( {\dfrac{\pi }{6} - 5x} \right)} \right]'}}{{{{\cos }^2}\left( {\dfrac{\pi }{6} - 5x} \right)}}\\
= \dfrac{{ - 2.\left( {\dfrac{\pi }{6} - 5x} \right)'\left[ { - \sin \left( {\dfrac{\pi }{6} - 5x} \right)} \right]}}{{{{\cos }^2}\left( {\dfrac{\pi }{6} - 5x} \right)}}\\
= \dfrac{{2.\left( { - 5} \right)\sin \left( {\dfrac{\pi }{6} - 5x} \right)}}{{{{\cos }^2}\left( {\dfrac{\pi }{6} - 5x} \right)}}\\
= \dfrac{{ - 10\sin \left( {\dfrac{\pi }{6} - 5x} \right)}}{{{{\cos }^2}\left( {\dfrac{\pi }{6} - 5x} \right)}}
\end{array}\)

 Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.


Hỏi bài