Bài 19 trang 234 SBT đại số và giải tích 11


Giải bài 19 trang 234 sách bài tập đại số và giải tích 11. Hãy tính giới hạn...

Lựa chọn câu để xem lời giải nhanh hơn

Tính các giới hạn

LG a

\(\mathop {\lim }\limits_{x \to a} \frac{{\sin x - \sin a}}{{x - a}}\)

Lời giải chi tiết:

\(\begin{array}{l}\mathop {\lim }\limits_{x \to a} \frac{{\sin x - \sin a}}{{x - a}}\\ = \mathop {\lim }\limits_{x \to a} \frac{{2\cos \frac{{x + a}}{2}\sin \frac{{x - a}}{2}}}{{2.\frac{{x - a}}{2}}}\\ = \mathop {\lim }\limits_{x \to a} \left( {\cos \frac{{x + a}}{2}.\frac{{\sin \frac{{x - a}}{2}}}{{\frac{{x - a}}{2}}}} \right)\\ = \mathop {\lim }\limits_{x \to a} \left( {\cos \frac{{x + a}}{2}} \right).\mathop {\lim }\limits_{x \to a} \left( {\frac{{\sin \frac{{x - a}}{2}}}{{\frac{{x - a}}{2}}}} \right)\\ = \cos a.1\\ = \cos a\end{array}\)

Cách khác:

Xét hàm số \(y = f\left( x \right) = \sin x\) có:

\(\begin{array}{l}\mathop {\lim }\limits_{x \to a} \frac{{\sin x - \sin a}}{{x - a}} = \mathop {\lim }\limits_{x \to a} \frac{{f\left( x \right) - f\left( a \right)}}{{x - a}}\\ = f'(a)\end{array}\)

Mà \(f'\left( x \right) = \cos x \Rightarrow f'\left( a \right) = \cos a\)

Vậy \(\mathop {\lim }\limits_{x \to a} \frac{{\sin x - \sin a}}{{x - a}} = f'\left( a \right) = \cos a\).

LG b

\(\mathop {\lim }\limits_{x \to 1} \left( {1 - x} \right)\tan \frac{{\pi x}}{2}\)

Lời giải chi tiết:

\(\mathop {\lim }\limits_{x \to 1} \left( {1 - x} \right)\tan \frac{{\pi x}}{2}\)

Đặt \(t = 1 - x\), khi \(x \to 1\) thì \(t \to 0\) ta có:

\(\begin{array}{l}\mathop {\lim }\limits_{x \to 1} \left( {1 - x} \right)\tan \frac{{\pi x}}{2}\\ = \mathop {\lim }\limits_{t \to 0} \left[ {t.\tan \frac{{\pi \left( {1 - t} \right)}}{2}} \right]\\ = \mathop {\lim }\limits_{t \to 0} \left[ {t.\tan \left( {\frac{\pi }{2} - \frac{{\pi t}}{2}} \right)} \right]\\ = \mathop {\lim }\limits_{t \to 0} \left( {t.\cot \frac{{\pi t}}{2}} \right)\\ = \mathop {\lim }\limits_{t \to 0} \left( {t.\frac{{\cos \frac{{\pi t}}{2}}}{{\sin \frac{{\pi t}}{2}}}} \right)\\ = \mathop {\lim }\limits_{t \to 0} \left( {\frac{t}{{\sin \frac{{\pi t}}{2}}}.\cos \frac{{\pi t}}{2}} \right)\\ = \mathop {\lim }\limits_{t \to 0} \left( {\frac{{\frac{{\pi t}}{2}.\frac{2}{\pi }}}{{\sin \frac{{\pi t}}{2}}}.\cos \frac{{\pi t}}{2}} \right)\\ = \mathop {\lim }\limits_{t \to 0} \left( {\frac{{\frac{{\pi t}}{2}}}{{\sin \frac{{\pi t}}{2}}}.\frac{2}{\pi }.\cos \frac{{\pi t}}{2}} \right)\\ = \frac{2}{\pi }.\mathop {\lim }\limits_{t \to 0} \frac{{\frac{{\pi t}}{2}}}{{\sin \frac{{\pi t}}{2}}}.\mathop {\lim }\limits_{t \to 0} \cos \frac{{\pi t}}{2}\\ = \frac{2}{\pi }.1.1\\ = \frac{2}{\pi }\end{array}\)

LG c

\(\mathop {\lim }\limits_{x \to \frac{\pi }{3}} \frac{{2{{\sin }^2}x + \sin x - 1}}{{2{{\sin }^2}x - 3\sin x + 1}}\)

Lời giải chi tiết:

\(\begin{array}{l}\mathop {\lim }\limits_{x \to \frac{\pi }{3}} \frac{{2{{\sin }^2}x + \sin x - 1}}{{2{{\sin }^2}x - 3\sin x + 1}}\\ = \frac{{2.{{\left( {\frac{{\sqrt 3 }}{2}} \right)}^2} + \frac{{\sqrt 3 }}{2} - 1}}{{2.{{\left( {\frac{{\sqrt 3 }}{2}} \right)}^2} - 3.\frac{{\sqrt 3 }}{2} + 1}}\\ = \frac{{\sqrt 3  + 1}}{{5 - 3\sqrt 3 }}\end{array}\)

LG d

\(\mathop {\lim }\limits_{x \to 0} \frac{{\tan x - \sin x}}{{{{\sin }^3}x}}\)

Lời giải chi tiết:

Ta có:

\(\begin{array}{l}\mathop {\lim }\limits_{x \to 0} \frac{{\tan x - \sin x}}{{{{\sin }^3}x}}\\ = \mathop {\lim }\limits_{x \to 0} \frac{{\frac{{\sin x}}{{\cos x}} - \sin x}}{{{{\sin }^3}x}}\\ = \mathop {\lim }\limits_{x \to 0} \frac{{\sin x - \sin x\cos x}}{{{{\sin }^3}x\cos x}}\\ = \mathop {\lim }\limits_{x \to 0} \frac{{\sin x\left( {1 - \cos x} \right)}}{{{{\sin }^3}x\cos x}}\\ = \mathop {\lim }\limits_{x \to 0} \frac{{1 - \cos x}}{{{{\sin }^2}x\cos x}}\\ = \mathop {\lim }\limits_{x \to 0} \frac{{2{{\sin }^2}\frac{x}{2}}}{{4{{\sin }^2}\frac{x}{2}{{\cos }^2}\frac{x}{2}.\cos x}}\\ = \mathop {\lim }\limits_{x \to 0} \frac{1}{{2{{\cos }^2}\frac{x}{2}.\cos x}}\\ = \frac{1}{{2.{{\cos }^2}0.\cos 0}}\\ = \frac{1}{2}\end{array}\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.


Góp ý Loigiaihay.com, nhận quà liền tay
Gửi bài