Bài 19 trang 234 SBT đại số và giải tích 11


Giải bài 19 trang 234 sách bài tập đại số và giải tích 11. Hãy tính giới hạn...

Lựa chọn câu để xem lời giải nhanh hơn

Tính các giới hạn

LG a

\(\mathop {\lim }\limits_{x \to a} \frac{{\sin x - \sin a}}{{x - a}}\)

Lời giải chi tiết:

\(\begin{array}{l}\mathop {\lim }\limits_{x \to a} \frac{{\sin x - \sin a}}{{x - a}}\\ = \mathop {\lim }\limits_{x \to a} \frac{{2\cos \frac{{x + a}}{2}\sin \frac{{x - a}}{2}}}{{2.\frac{{x - a}}{2}}}\\ = \mathop {\lim }\limits_{x \to a} \left( {\cos \frac{{x + a}}{2}.\frac{{\sin \frac{{x - a}}{2}}}{{\frac{{x - a}}{2}}}} \right)\\ = \mathop {\lim }\limits_{x \to a} \left( {\cos \frac{{x + a}}{2}} \right).\mathop {\lim }\limits_{x \to a} \left( {\frac{{\sin \frac{{x - a}}{2}}}{{\frac{{x - a}}{2}}}} \right)\\ = \cos a.1\\ = \cos a\end{array}\)

Cách khác:

Xét hàm số \(y = f\left( x \right) = \sin x\) có:

\(\begin{array}{l}\mathop {\lim }\limits_{x \to a} \frac{{\sin x - \sin a}}{{x - a}} = \mathop {\lim }\limits_{x \to a} \frac{{f\left( x \right) - f\left( a \right)}}{{x - a}}\\ = f'(a)\end{array}\)

Mà \(f'\left( x \right) = \cos x \Rightarrow f'\left( a \right) = \cos a\)

Vậy \(\mathop {\lim }\limits_{x \to a} \frac{{\sin x - \sin a}}{{x - a}} = f'\left( a \right) = \cos a\).

LG b

\(\mathop {\lim }\limits_{x \to 1} \left( {1 - x} \right)\tan \frac{{\pi x}}{2}\)

Lời giải chi tiết:

\(\mathop {\lim }\limits_{x \to 1} \left( {1 - x} \right)\tan \frac{{\pi x}}{2}\)

Đặt \(t = 1 - x\), khi \(x \to 1\) thì \(t \to 0\) ta có:

\(\begin{array}{l}\mathop {\lim }\limits_{x \to 1} \left( {1 - x} \right)\tan \frac{{\pi x}}{2}\\ = \mathop {\lim }\limits_{t \to 0} \left[ {t.\tan \frac{{\pi \left( {1 - t} \right)}}{2}} \right]\\ = \mathop {\lim }\limits_{t \to 0} \left[ {t.\tan \left( {\frac{\pi }{2} - \frac{{\pi t}}{2}} \right)} \right]\\ = \mathop {\lim }\limits_{t \to 0} \left( {t.\cot \frac{{\pi t}}{2}} \right)\\ = \mathop {\lim }\limits_{t \to 0} \left( {t.\frac{{\cos \frac{{\pi t}}{2}}}{{\sin \frac{{\pi t}}{2}}}} \right)\\ = \mathop {\lim }\limits_{t \to 0} \left( {\frac{t}{{\sin \frac{{\pi t}}{2}}}.\cos \frac{{\pi t}}{2}} \right)\\ = \mathop {\lim }\limits_{t \to 0} \left( {\frac{{\frac{{\pi t}}{2}.\frac{2}{\pi }}}{{\sin \frac{{\pi t}}{2}}}.\cos \frac{{\pi t}}{2}} \right)\\ = \mathop {\lim }\limits_{t \to 0} \left( {\frac{{\frac{{\pi t}}{2}}}{{\sin \frac{{\pi t}}{2}}}.\frac{2}{\pi }.\cos \frac{{\pi t}}{2}} \right)\\ = \frac{2}{\pi }.\mathop {\lim }\limits_{t \to 0} \frac{{\frac{{\pi t}}{2}}}{{\sin \frac{{\pi t}}{2}}}.\mathop {\lim }\limits_{t \to 0} \cos \frac{{\pi t}}{2}\\ = \frac{2}{\pi }.1.1\\ = \frac{2}{\pi }\end{array}\)

LG c

\(\mathop {\lim }\limits_{x \to \frac{\pi }{3}} \frac{{2{{\sin }^2}x + \sin x - 1}}{{2{{\sin }^2}x - 3\sin x + 1}}\)

Lời giải chi tiết:

\(\begin{array}{l}\mathop {\lim }\limits_{x \to \frac{\pi }{3}} \frac{{2{{\sin }^2}x + \sin x - 1}}{{2{{\sin }^2}x - 3\sin x + 1}}\\ = \frac{{2.{{\left( {\frac{{\sqrt 3 }}{2}} \right)}^2} + \frac{{\sqrt 3 }}{2} - 1}}{{2.{{\left( {\frac{{\sqrt 3 }}{2}} \right)}^2} - 3.\frac{{\sqrt 3 }}{2} + 1}}\\ = \frac{{\sqrt 3  + 1}}{{5 - 3\sqrt 3 }}\end{array}\)

LG d

\(\mathop {\lim }\limits_{x \to 0} \frac{{\tan x - \sin x}}{{{{\sin }^3}x}}\)

Lời giải chi tiết:

Ta có:

\(\begin{array}{l}\mathop {\lim }\limits_{x \to 0} \frac{{\tan x - \sin x}}{{{{\sin }^3}x}}\\ = \mathop {\lim }\limits_{x \to 0} \frac{{\frac{{\sin x}}{{\cos x}} - \sin x}}{{{{\sin }^3}x}}\\ = \mathop {\lim }\limits_{x \to 0} \frac{{\sin x - \sin x\cos x}}{{{{\sin }^3}x\cos x}}\\ = \mathop {\lim }\limits_{x \to 0} \frac{{\sin x\left( {1 - \cos x} \right)}}{{{{\sin }^3}x\cos x}}\\ = \mathop {\lim }\limits_{x \to 0} \frac{{1 - \cos x}}{{{{\sin }^2}x\cos x}}\\ = \mathop {\lim }\limits_{x \to 0} \frac{{2{{\sin }^2}\frac{x}{2}}}{{4{{\sin }^2}\frac{x}{2}{{\cos }^2}\frac{x}{2}.\cos x}}\\ = \mathop {\lim }\limits_{x \to 0} \frac{1}{{2{{\cos }^2}\frac{x}{2}.\cos x}}\\ = \frac{1}{{2.{{\cos }^2}0.\cos 0}}\\ = \frac{1}{2}\end{array}\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

2k7 Tham gia ngay group chia sẻ, trao đổi tài liệu học tập mễn phí

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.