Bài 5 trang 232 SBT đại số và giải tích 11


Giải bài 5 trang 232 sách bài tập đại số và giải tích 11. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số...

Đề bài

Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số

y = sin2x + 4sinx.cosx - 3cos2x + 1

Lời giải chi tiết

Ta có:

\(\begin{array}{l}
y = {\sin ^2}x + 4\sin x\cos x - 3{\cos ^2}x + 1\\
= \frac{{1 - \cos 2x}}{2} + 2\sin 2x - 3.\frac{{1 + \cos 2x}}{2} + 1\\
= \frac{1}{2} - \frac{1}{2}\cos 2x + 2\sin 2x - \frac{3}{2} - \frac{3}{2}\cos 2x + 1\\
= 2\sin 2x - 2\cos 2x\\
= 2\left( {\sin 2x - \cos 2x} \right)\\
= 2\sqrt 2 \sin \left( {2x - \frac{\pi }{4}} \right)
\end{array}\)

Mà \( - 1 \le \sin \left( {2x - \frac{\pi }{4}} \right) \le 1\) nên:

\(\begin{array}{l}
- 2\sqrt 2 \le 2\sqrt 2 \sin \left( {2x - \frac{\pi }{4}} \right) \le 2\sqrt 2 \\
\Rightarrow - 2\sqrt 2 \le y \le 2\sqrt 2
\end{array}\)

Do đó GTLN của hàm số là 2√2, đạt được khi sin(2x- π/4) = 1 hay 2x- π/4 = π/2 + k2π, tức là khi x = 3π/8 + kπ; k Z.

GTNN của hàm số là -2√2, đạt được khi sin(2x- π/4) = -1 hay 2x- π/4 = (-π)/2 + k2π, tức là khi x = (-π)/8 + kπ; k Z.

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>>KHOÁ NỀN TẢNG LỚP 12 DÀNH CHO 2K4 NĂM 2022 học sớm chiếm lợi thế luyện thi TN THPT & ĐH


Gửi bài