Bài 14 trang 233 SBT đại số và giải tích 11


Giải bài 14 trang 233 sách bài tập đại số và giải tích 11. Hãy tính giới hạn...

Lựa chọn câu để xem lời giải nhanh hơn

Hãy tính giới hạn \(\mathop {\lim }\limits_{n \to  + \infty } {x_n}\).

LG a

\({x_n} = \frac{{\sqrt n }}{{\sqrt {n + 1}  + \sqrt n }}\)

Lời giải chi tiết:

\(\begin{array}{l}\lim {x_n} = \lim \frac{{\sqrt n }}{{\sqrt {n + 1}  + \sqrt n }}\\ = \lim \frac{{\sqrt n }}{{\sqrt {n\left( {1 + \frac{1}{n}} \right)}  + \sqrt n }}\\ = \lim \frac{{\sqrt n }}{{\sqrt n \left( {\sqrt {1 + \frac{1}{n}}  + 1} \right)}}\\ = \lim \frac{1}{{\sqrt {1 + \frac{1}{n}}  + 1}} = \frac{1}{{1 + 1}}\\ = \frac{1}{2}\end{array}\)

LG b

\({x_n} = \sqrt[3]{{1 + {n^3}}} - n\)

Lời giải chi tiết:

\(\begin{array}{l}\lim {x_n} = \lim \left( {\sqrt[3]{{1 + {n^3}}} - n} \right)\\ = \lim \frac{{\left( {1 + {n^3}} \right) - {n^3}}}{{{{\left( {\sqrt[3]{{1 + {n^3}}}} \right)}^2} + \sqrt[3]{{1 + {n^3}}}.n + {n^2}}}\\ = \lim \frac{1}{{{{\left( {\sqrt[3]{{1 + {n^3}}}} \right)}^2} + n.\sqrt[3]{{1 + {n^3}}} + {n^2}}}\\ = 0\end{array}\)

LG c

\({x_n} = {n^2}\left( {n - \sqrt {{n^2} + 1} } \right)\)

Lời giải chi tiết:

\(\begin{array}{l}\lim {x_n} = \lim \left[ {{n^2}\left( {n - \sqrt {{n^2} + 1} } \right)} \right]\\ = \lim \frac{{{n^2}.\left[ {{n^2} - \left( {{n^2} + 1} \right)} \right]}}{{n + \sqrt {{n^2} + 1} }}\\ = \lim \frac{{{n^2}.\left( { - 1} \right)}}{{n + \sqrt {{n^2} + 1} }}\\ = \lim \left[ { - n.\frac{n}{{n + \sqrt {{n^2} + 1} }}} \right]\\ = \lim \left[ { - n.\frac{1}{{1 + \sqrt {1 + \frac{1}{{{n^2}}}} }}} \right]\\ =  - \infty \end{array}\)

Vì \(\lim \left( { - n} \right) =  - \infty \); \(\lim \frac{1}{{1 + \sqrt {1 + \frac{1}{{{n^2}}}} }} = \frac{1}{{1 + 1}} = \frac{1}{2} > 0\).

LG d

\({x_n} = \sqrt[3]{{{n^2} - {n^3}}} + n\)

Lời giải chi tiết:

\(\begin{array}{l}\lim {x_n} = \lim \left( {\sqrt[3]{{{n^2} - {n^3}}} + n} \right)\\ = \lim \frac{{{n^2} - {n^3} + {n^3}}}{{{{\left( {\sqrt[3]{{{n^2} - {n^3}}}} \right)}^2} - n.\sqrt[3]{{{n^2} - {n^3}}} + {n^2}}}\\ = \lim \frac{{{n^2}}}{{{{\left( {\sqrt[3]{{{n^3}\left( {\frac{1}{n} - 1} \right)}}} \right)}^2} - n.\sqrt[3]{{{n^3}\left( {\frac{1}{n} - 1} \right)}} + {n^2}}}\\ = \lim \frac{{{n^2}}}{{{{\left( {n\sqrt[3]{{\frac{1}{n} - 1}}} \right)}^2} - n.n\sqrt[3]{{\frac{1}{n} - 1}} + {n^2}}}\\ = \lim \frac{{{n^2}}}{{{n^2}{{\left( {\sqrt[3]{{\frac{1}{n} - 1}}} \right)}^2} - {n^2}\sqrt[3]{{\frac{1}{n} - 1}} + {n^2}}}\\ = \lim \frac{{{n^2}}}{{{n^2}\left[ {{{\left( {\sqrt[3]{{\frac{1}{n} - 1}}} \right)}^2} - \sqrt[3]{{\frac{1}{n} - 1}} + 1} \right]}}\\ = \lim \frac{1}{{{{\left( {\sqrt[3]{{\frac{1}{n} - 1}}} \right)}^2} - \sqrt[3]{{\frac{1}{n} - 1}} + 1}}\\ = \frac{1}{{{{\left( { - 1} \right)}^2} - \left( { - 1} \right) + 1}} = \frac{1}{3}\end{array}\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.