Bài 16 trang 233 SBT đại số và giải tích 11


Giải bài 16 trang 233 sách bài tập đại số và giải tích 11. Xét tính bị chặn của các dãy số với số hạng tổng quát sau:...

Lựa chọn câu để xem lời giải nhanh hơn

Xét tính bị chặn của các dãy số với số hạng tổng quát sau:

LG a

\({x_n} = \frac{{5{n^2}}}{{{n^2} + 3}}\)

Lời giải chi tiết:

Ta thấy,

\({x_n} = \frac{{5{n^2}}}{{{n^2} + 3}} > 0,\forall n \in {N^*}\)

Mà \({x_n} = \frac{{5{n^2}}}{{{n^2} + 3}} < \frac{{5{n^2}}}{{{n^2}}} = 5,\forall n \in {N^*}\)

Vậy \(0 < {x_n} < 5,\forall n \in {N^*}\) nên dãy \(\left( {{x_n}} \right)\) bị chặn.

LG b

\({y_n} = {\left( { - 1} \right)^n}\frac{{2n}}{{n + 1}}\sin n\)

Lời giải chi tiết:

Ta có:

\(\begin{array}{l}\left| {{y_n}} \right| = \left| {{{\left( { - 1} \right)}^n}\frac{{2n}}{{n + 1}}\sin n} \right|\\ = \left| {{{\left( { - 1} \right)}^n}} \right|.\left| {\frac{{2n}}{{n + 1}}} \right|.\left| {\sin n} \right| \le 1.\frac{{2n}}{{n + 1}}.1\\ = \frac{{2n}}{{n + 1}} < \frac{{2n}}{n} = 2\\ \Rightarrow \left| {{y_n}} \right| < 2\\ \Rightarrow  - 2 < {y_n} < 2,\forall n \in {N^*}\end{array}\)

Vậy \(\left( {{y_n}} \right)\) là dãy bị chặn.

LG c

\({x_n} = n\cos n\pi \)

Lời giải chi tiết:

Dãy \(\left( {{z_n}} \right)\) không bị chặn vì:

\(\left| {{z_n}} \right| = \left| {n\cos n\pi } \right|\) \( = \left| n \right|.\left| {\cos n\pi } \right| = n.1 = n\)

Nên không tồn tại số M nào sao cho \(\left| {{z_n}} \right| < M,\forall n \in {N^*}\).

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.