Bài 16 trang 233 SBT đại số và giải tích 11


Giải bài 16 trang 233 sách bài tập đại số và giải tích 11. Xét tính bị chặn của các dãy số với số hạng tổng quát sau:...

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Lựa chọn câu để xem lời giải nhanh hơn

Xét tính bị chặn của các dãy số với số hạng tổng quát sau:

LG a

\({x_n} = \frac{{5{n^2}}}{{{n^2} + 3}}\)

Lời giải chi tiết:

Ta thấy,

\({x_n} = \frac{{5{n^2}}}{{{n^2} + 3}} > 0,\forall n \in {N^*}\)

Mà \({x_n} = \frac{{5{n^2}}}{{{n^2} + 3}} < \frac{{5{n^2}}}{{{n^2}}} = 5,\forall n \in {N^*}\)

Vậy \(0 < {x_n} < 5,\forall n \in {N^*}\) nên dãy \(\left( {{x_n}} \right)\) bị chặn.

LG b

\({y_n} = {\left( { - 1} \right)^n}\frac{{2n}}{{n + 1}}\sin n\)

Lời giải chi tiết:

Ta có:

\(\begin{array}{l}\left| {{y_n}} \right| = \left| {{{\left( { - 1} \right)}^n}\frac{{2n}}{{n + 1}}\sin n} \right|\\ = \left| {{{\left( { - 1} \right)}^n}} \right|.\left| {\frac{{2n}}{{n + 1}}} \right|.\left| {\sin n} \right| \le 1.\frac{{2n}}{{n + 1}}.1\\ = \frac{{2n}}{{n + 1}} < \frac{{2n}}{n} = 2\\ \Rightarrow \left| {{y_n}} \right| < 2\\ \Rightarrow  - 2 < {y_n} < 2,\forall n \in {N^*}\end{array}\)

Vậy \(\left( {{y_n}} \right)\) là dãy bị chặn.

LG c

\({x_n} = n\cos n\pi \)

Lời giải chi tiết:

Dãy \(\left( {{z_n}} \right)\) không bị chặn vì:

\(\left| {{z_n}} \right| = \left| {n\cos n\pi } \right|\) \( = \left| n \right|.\left| {\cos n\pi } \right| = n.1 = n\)

Nên không tồn tại số M nào sao cho \(\left| {{z_n}} \right| < M,\forall n \in {N^*}\).

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí