Bài 20 trang 234 SBT đại số và giải tích 11


Giải bài 20 trang 234 sách bài tập đại số và giải tích 11. Tính đạo hàm của các hàm số sau:...

Lựa chọn câu để xem lời giải nhanh hơn

Tính đạo hàm của các hàm số sau:

LG a

\(y = \frac{{1 + x - {x^2}}}{{1 - x + {x^2}}}\)

Lời giải chi tiết:

LG b

\(y = \frac{{\left( {2 - {x^2}} \right)\left( {3 - {x^3}} \right)}}{{{{\left( {1 - x} \right)}^2}}}\)

Lời giải chi tiết:

LG c

\(y = \cos 2x - 2\sin x\)

Lời giải chi tiết:

\(\begin{array}{l}y = \cos 2x - 2\sin x\\y' = \left( {\cos 2x} \right)' - 2\left( {\sin x} \right)'\\ =  - \left( {2x} \right)'\sin 2x - 2\cos x\\ =  - 2\sin 2x - 2\cos x\end{array}\)

LG d

\(y = \frac{{\cos x}}{{2{{\sin }^2}x}}\)

Lời giải chi tiết:

\(\begin{array}{l}y = \frac{{\cos x}}{{2{{\sin }^2}x}}\\y' = \frac{{\left( {\cos x} \right)'.2{{\sin }^2}x - \cos x\left( {2{{\sin }^2}x} \right)'}}{{4{{\sin }^4}x}}\\ = \frac{{ - \sin x.2{{\sin }^2}x - \cos x.2.2\left( {\sin x} \right)'\sin x}}{{4{{\sin }^4}x}}\\ = \frac{{ - 2{{\sin }^3}x - 4\cos x.\cos x.\sin x}}{{4{{\sin }^4}x}}\\ = \frac{{ - 2\sin x\left( {{{\sin }^2}x + 2{{\cos }^2}x} \right)}}{{4{{\sin }^4}x}}\\ =  - \frac{{{{\sin }^2}x + {{\cos }^2}x + {{\cos }^2}x}}{{2{{\sin }^3}x}}\\ =  - \frac{{1 + {{\cos }^2}x}}{{2{{\sin }^3}x}}\end{array}\)

LG e

\(y = {\cos ^2}\frac{x}{3}\tan \frac{x}{2}\)

Lời giải chi tiết:

\(y = {\cos ^2}\frac{x}{3}\tan \frac{x}{2}\)

\(\begin{array}{l}y' = \left( {{{\cos }^2}\frac{x}{3}} \right)'\tan \frac{x}{2} + {\cos ^2}\frac{x}{3}\left( {\tan \frac{x}{2}} \right)'\\ = 2\cos \frac{x}{3}.\left( {\cos \frac{x}{3}} \right)'.\frac{{\sin \frac{x}{2}}}{{\cos \frac{x}{2}}} + {\cos ^2}\frac{x}{3}.\frac{{\left( {\frac{x}{2}} \right)'}}{{{{\cos }^2}\frac{x}{2}}}\\ = 2\cos \frac{x}{3}.\left( {\frac{x}{3}} \right)'.\left( { - \sin \frac{x}{3}} \right).\frac{{\sin \frac{x}{2}}}{{\cos \frac{x}{2}}} + {\cos ^2}\frac{x}{3}.\frac{{\frac{1}{2}}}{{{{\cos }^2}\frac{x}{2}}}\\ =  - 2\cos \frac{x}{3}.\frac{1}{3}\sin \frac{x}{3}.\frac{{\sin \frac{x}{2}}}{{\cos \frac{x}{2}}} + \frac{1}{2}.\frac{{{{\cos }^2}\frac{x}{3}}}{{{{\cos }^2}\frac{x}{2}}}\\ =  - \frac{1}{3}\sin \frac{{2x}}{3}\tan \frac{x}{2} + \frac{{{{\cos }^2}\frac{x}{3}}}{{2{{\cos }^2}\frac{x}{2}}}\end{array}\)

LG f

\(y = \sqrt {\sin \left( {2x - \frac{\pi }{6}} \right)}\)

Lời giải chi tiết:

\(\begin{array}{l}y = \sqrt {\sin \left( {2x - \frac{\pi }{6}} \right)} \\y' = \frac{{\left[ {\sin \left( {2x - \frac{\pi }{6}} \right)} \right]'}}{{2\sqrt {\sin \left( {2x - \frac{\pi }{6}} \right)} }}\\ = \frac{{\left( {2x - \frac{\pi }{6}} \right)'.\cos \left( {2x - \frac{\pi }{6}} \right)}}{{2\sqrt {\sin \left( {2x - \frac{\pi }{6}} \right)} }}\\ = \frac{{2\cos \left( {2x - \frac{\pi }{6}} \right)}}{{2\sqrt {\sin \left( {2x - \frac{\pi }{6}} \right)} }}\\ = \frac{{\cos \left( {2x - \frac{\pi }{6}} \right)}}{{\sqrt {\sin \left( {2x - \frac{\pi }{6}} \right)} }}\end{array}\)

LG g

\(y = \cos \frac{x}{{x + 1}}\)

Lời giải chi tiết:

\(y = \cos \frac{x}{{x + 1}}\)

\(\begin{array}{l}y' = \left( {\frac{x}{{x + 1}}} \right)'.\left( { - \sin \frac{x}{{x + 1}}} \right)\\ = \frac{{\left( x \right)'\left( {x + 1} \right) - x\left( {x + 1} \right)'}}{{{{\left( {x + 1} \right)}^2}}}.\left( { - \sin \frac{x}{{x + 1}}} \right)\\ =  - \frac{{1.\left( {x + 1} \right) - x.1}}{{{{\left( {x + 1} \right)}^2}}}\sin \frac{x}{{x + 1}}\\ =  - \frac{1}{{{{\left( {x + 1} \right)}^2}}}\sin \frac{x}{{x + 1}}\end{array}\)

LG h

\(y = \frac{{{x^2} - 1}}{{\sin 3x}}\)

Lời giải chi tiết:

\(y = \frac{{{x^2} - 1}}{{\sin 3x}}\)

\(\begin{array}{l}y' = \frac{{\left( {{x^2} - 1} \right)'\sin 3x - \left( {{x^2} - 1} \right).\left( {\sin 3x} \right)'}}{{{{\sin }^2}3x}}\\ = \frac{{2x\sin 3x - \left( {{x^2} - 1} \right).\left( {3x} \right)'\cos 3x}}{{{{\sin }^2}3x}}\\ = \frac{{2x\sin 3x - \left( {{x^2} - 1} \right).3\cos 3x}}{{{{\sin }^2}3x}}\\ = \frac{{2x\sin 3x - 3\left( {{x^2} - 1} \right)\cos 3x}}{{{{\sin }^2}3x}}\end{array}\)

LG i

\(y = 3{\sin ^2}x\cos x + {\cos ^2}x\)

Lời giải chi tiết:

\(\begin{array}{l}y = 3{\sin ^2}x\cos x + {\cos ^2}x\\y' = 3.\left[ {\left( {{{\sin }^2}x} \right)'\cos x + {{\sin }^2}x\left( {\cos x} \right)'} \right] + 2\cos x\left( {\cos x} \right)'\\ = 3\left[ {2\sin x\left( {\sin x} \right)'\cos x + {{\sin }^2}x.\left( { - \sin x} \right)} \right] + 2\cos x\left( { - \sin x} \right)\\ = 3\left( {2\sin x\cos x\cos x - {{\sin }^3}x} \right) - 2\sin x\cos x\\ = 3\left( {\sin 2x\cos x - {{\sin }^3}x} \right) - \sin 2x\\ = 3\sin 2x\cos x - 3{\sin ^3}x - \sin 2x\\ = \sin 2x\left( {3\cos x - 1} \right) - 3{\sin ^3}x\end{array}\)

LG k

\(y = \sqrt {7 - 4x} \cot 3x\)

Lời giải chi tiết:

\(\begin{array}{l}y = \sqrt {7 - 4x} \cot 3x\\y' = \left( {\sqrt {7 - 4x} } \right)'\cot 3x + \sqrt {7 - 4x} \left( {\cot 3x} \right)'\\ = \frac{{\left( {7 - 4x} \right)'}}{{2\sqrt {7 - 4x} }}.\cot 3x + \sqrt {7 - 4x} .\frac{{ - \left( {3x} \right)'}}{{{{\sin }^2}3x}}\\ = \frac{{ - 4}}{{2\sqrt {7 - 4x} }}.\cot 3x + \sqrt {7 - 4x} .\frac{{ - 3}}{{{{\sin }^2}3x}}\\ = \frac{{ - 2\cot 3x}}{{\sqrt {7 - 4x} }} - \frac{{3\sqrt {7 - 4x} }}{{{{\sin }^2}3x}}\end{array}\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>>Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu


Gửi bài