Bài 2.36 trang 102 SBT hình học 10


Giải bài 2.36 trang 102 sách bài tập hình học 10. Tam giác ABC có...

Lựa chọn câu để xem lời giải nhanh hơn

Tam giác ABC có \(bc = {a^2}\). Chứng minh rằng :

LG a

\({\sin ^2}A = \sin B.\sin C\);

Phương pháp giải:

Sử dụng định lý sin trong tam giác \(\dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}} = \dfrac{c}{{\sin C}} = 2R\).

Giải chi tiết:

Theo giả thiết ta có: \({a^2} = bc\)

Thay \(a = 2R\sin A,b = 2R\sin B,c = 2R\sin C\) vào hệ thức trên ta có:

\(4{R^2}{\sin ^2}A = 2R\sin B.2R{\mathop{\rm sinC}\nolimits} \)\( \Rightarrow {\sin ^2}A = \sin B.\sin C\)

LG b

\({h_b}.{h_c} = h_a^2\).

Phương pháp giải:

Sử dụng công thức \(S = \dfrac{1}{2}a{h_a} = \dfrac{1}{2}b{h_b} = \dfrac{1}{2}c{h_c}\).

Giải chi tiết:

Ta có \(2S = a{h_a} = b{h_b} = c{h_c}\)

Do đó: \({a^2}h_a^2 = b.c.{h_b}.{h_c}\)

Theo giả thiết: \({a^2} = bc\) nên ta suy ra \(h_a^2 = {h_b}.{h_c}\).

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.