Bài 2.31 trang 101 SBT hình học 10


Đề bài

Tam giác ABC có \(a = 2\sqrt 3 ,b = 2\sqrt 2 ,c = \sqrt 6  - \sqrt 2 \). Tính các góc A, B và các độ dài \({h_a}\), R, r của tam giác đó.

Phương pháp giải - Xem chi tiết

Sử dụng định lý cô sin trong tam giác và các công thức diện tích tam giác, bán kính ngoại tiếp, nội tiếp tam giác.

Xem chi tiết tại đây.

Lời giải chi tiết

Ta có: \(\cos A = \dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\)\( = \dfrac{{8 + 6 + 2 - 2\sqrt {12}  - 12}}{{4\sqrt 2 (\sqrt 6  - \sqrt 2 )}}\) \( = \dfrac{{4 - 4\sqrt 3 }}{{8\sqrt 3  - 8}}\) \( = \dfrac{{4(1 - \sqrt 3 )}}{{8(\sqrt 3  - 1)}} =  - \dfrac{1}{2}\)

Do đó \(\widehat A = {120^0}\).

\(\cos B = \dfrac{{{c^2} + {a^2} - {b^2}}}{{2.ca}}\)\( = \dfrac{{6 + 2 - 2\sqrt {12}  + 12 - 8}}{{2.(\sqrt 6  - \sqrt 2 ).2\sqrt 3 }}\) \( = \dfrac{{12 - 2\sqrt {12} }}{{4\sqrt {18}  - 4\sqrt 6 }}\) \( = \dfrac{{4(3 - \sqrt 3 )}}{{4\sqrt 2 (3 - \sqrt 3 )}} = \dfrac{1}{{\sqrt 2 }} = \dfrac{{\sqrt 2 }}{2}\).

Vậy \(\widehat B = {45^0}\).

Ta có: \({h_a} = \dfrac{{2S}}{a} = \dfrac{{ac\sin B}}{a} = c\sin B\)\( = \left( {\sqrt 6  - \sqrt 2 } \right)\dfrac{{\sqrt 2 }}{2} = \sqrt 3  - 1\)

\(\dfrac{b}{{\sin B}} = 2R\)\( \Rightarrow R = \dfrac{b}{{2\sin B}} = \dfrac{{2\sqrt 2 }}{{2.\dfrac{{\sqrt 2 }}{2}}} = 2\)

\(S = pr\)\( \Rightarrow r = \dfrac{S}{p} = \dfrac{{\dfrac{1}{2}ac\sin B}}{{\dfrac{1}{2}(a + b + c)}} = \dfrac{{ac\sin B}}{{a + b + c}}\) \( = \dfrac{{2\sqrt 3 \left( {\sqrt 6  - \sqrt 2 } \right)\dfrac{{\sqrt 2 }}{2}}}{{2\sqrt 3  + 2\sqrt 2  + \sqrt 6  - \sqrt 2 }}\)\( = \dfrac{{\sqrt 3 \left( {\sqrt 6  - \sqrt 2 } \right)}}{{\sqrt 6  + \sqrt 3  + 1}}\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.