Bài 2 trang 101 SBT toán 7 tập 2


Giải bài 2 trang 101 sách bài tập toán 7. Cho góc vuông xOy, điểm A thuộc tia Ox, điểm B thuộc tia Oy. Gọi D, E theo thứ tự là trung điểm của OA, OB. Đường vuông góc với OA tại D và đường vuông góc với OB tại E cắt nhau ở C....

Đề bài

Cho góc vuông \(xOy,\) điểm \(A\) thuộc tia \(Ox,\) điểm \(B\) thuộc tia \(Oy.\) Gọi \(D, E\) theo thứ tự là trung điểm của \(OA, OB.\) Đường vuông góc với \(OA\) tại \(D\) và đường vuông góc với \(OB\) tại \(E\) cắt nhau ở \(C.\) Chứng minh rằng:

a) \(CE = OD;\)        b) \( CE ⊥ CD;\)

c) \(CA = CB;\)        d) \(CA // DE;\) 

e) Ba điểm \(A, B, C\) thẳng hàng.

Phương pháp giải - Xem chi tiết

Sử dụng:

+) Các trường hợp bằng nhau của tam giác 

+) Quan hệ từ vuông góc đến song song

+) Tính chất hai đường thẳng song song: Nếu một đường thẳng cắt hai đường thẳng song song thì tạo thành các gặp góc so le trong bằng nhau.

+) Tiên đề Ơ-clit về hai đường thẳng song song

Lời giải chi tiết

a) Vì \(CE \bot OB;\,OA \bot OB \Rightarrow EC//OA\) (quan hệ từ vuông góc đến song song)

+) Vì \(EC//OD\) nên \(\widehat {ECO} = \widehat {COD}\) (so le trong) 

Xét \(\Delta OEC\) vuông tại \(E\)  và \(\Delta COD\) vuông tại \(D\)  có: 

+) \(\widehat {ECO} = \widehat {COD}\) (chứng minh trên)

+) \(OD\) cạnh chung

Nên \(\Delta OEC = \Delta COD\left( {ch - gn} \right)\)\( \Rightarrow EC = OD\) (hai cạnh tương ứng)

b) Vì \(CD \bot OA;OB \bot OA \Rightarrow CD//OB\) (quan hệ từ vuông góc đến song song)

Mà \(CE \bot OB \Rightarrow CE \bot CD\)  (quan hệ từ vuông góc đến song song)

c) Ta có \(CE\) là đường trung trực của đoạn \(OB \Rightarrow CB = CO\) (tính chất đường trung trực)

Và \(CD\) là đường trung trực của đoạn \(OA \Rightarrow CA = CO\) (tính chất đường trung trực)

Suy ra \(CA = CB\,\left( { = CO} \right).\)

d) Theo câu a) ta có \(EC = OD\) mà \(OD = DA = \dfrac{{OA}}{2} \)\(\Rightarrow EC = AD\)

Xét \(\Delta CED\) và \(\Delta DAC\) có:

+) \(EC = AD\) (chứng minh trên)

+) \(\widehat {CDA} = \widehat {ECD} = 90^\circ \)

+) \(DC\) cạnh chung

Suy ra \(\Delta CED = \Delta DAC\left( {c - g - c} \right) \)\(\Rightarrow \widehat {CDE} = \widehat {DCA}\)

Mà hai góc \(\widehat {CDE};\,\widehat {DCA}\) ở vị trí so le trong nên suy ra \(ED//AC\)

e) Cách 1:

Tương tự câu d) ta có \(BC//ED\)

Mà theo câu d) thì \(AC//ED\)

Theo tiên đề Ơ-clit ta suy ra \(B,C,A\) thẳng hàng.

Cách 2: 

Vì \(OC=CA\) (chứng minh trên) nên tam giác \(OAC\) cân tại \(C\)

Do đó, đường cao \(CD\) cũng là đường phân giác góc ACO

Nên \(\widehat {OCA} = 2.\widehat {OCD}\)

Vì \(CB=CO\) (chứng minh trên) nên tam giác \(OBC\) cân tại \(C\)

Do đó, đường cao \(CE\) cũng là đường phân giác góc BCO

Nên \(\widehat {BCO} = 2.\widehat {ECO}\)

Mà \(CE \bot CD\) (theo câu b) nên \(\widehat {ECD} = {90^0}\)

Do đó: 

\(\widehat {BCO} + \widehat {ACO} = 2\left( {\widehat {ECO} + \widehat {OCD}} \right) \)\(= 2.\widehat {ECD} = {2.90^0} = {180^0}\)

Vậy A, C, B thẳng hàng.

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu
  • Bài 3 trang 102 SBT toán 7 tập 2

    Giải bài 3 trang 102 sách bài tập toán 7. Tìm giá trị của x trên hình 108 biết rằng AB // DE.

  • Bài 4 trang 102 SBT toán 7 tập 2

    Giải bài 4 trang 102 sách bài tập toán 7. So sánh các cạnh của tam giác CDE trên hình 109 biết rằng BE // CD.

  • Bài 5 trang 102 SBT toán 7 tập 2

    Bài 5 trang 102 sách bài tập toán 7. Cho tam giác ABC vuông góc tại A, phân giác BD. a) So sánh các độ dài AB và AD; b) So sánh các độ dài BC và BD.

  • Bài 6 trang 102 SBT toán 7 tập 2

    Giải bài 6 trang 102 sách bài tập toán 7. Cho tam giác ABC vuông tại A, phân giác BD. Kẻ DE ⊥ BC (E ∈ BC). Gọi F là giao điểm của BA và ED. Chứng minh rằng: a) BD là đường thẳng trung trực của AE;...

  • Bài 7 trang 102 SBT toán 7 tập 2

    Giải bài 7 trang 102 sách bài tập toán 7. a) Chứng minh rằng: Nếu tam giác ABC có đường trung tuyến AM bằng nửa cạnh BC thì tam giác đó vuông tại A...

>> Xem thêm

Tham Gia Group Dành Cho 2K12 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí