Bài 1.84 trang 47 SBT hình học 10


Đề bài

Cho tam giác \(ABC\), \(I\) là trung điểm của \(BC\), \(M\) là một điểm tùy ý. Điểm \(G\) là trọng tâm tam giác \(ABC\) nếu:

A. \(GA = 2GI\)

B. \(\overrightarrow {AG}  + \overrightarrow {BG}  + \overrightarrow {CG}  = \overrightarrow 0 \)

C. \(\overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC}  = 3\overrightarrow {MG} \)

D. \(\overrightarrow {MA}  + 2\overrightarrow {MI}  = 3\overrightarrow {MG} \)

Hãy chọn khẳng định sai.

Phương pháp giải - Xem chi tiết

Sử dụng tính chất trọng tâm: \(G\) là trọng tâm của tam giác nếu và chỉ nếu \(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  = \overrightarrow 0 \).

Lời giải chi tiết

+) \(G\) là trọng tâm của tam giác \( \Leftrightarrow \overrightarrow {GA}  =  - 2\overrightarrow {GI} \), điều kiện \(GA = 2GI\) chưa đủ để kết luận \(G\) là trọng tâm của tam giác nên A sai.

+) \(G\) là trọng tâm của tam giác nếu và chỉ nếu \(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  = \overrightarrow 0 \)\( \Leftrightarrow \overrightarrow {AG}  + \overrightarrow {BG}  + \overrightarrow {CG}  = \overrightarrow 0 \) nên B đúng.

+) \(G\) là trọng tâm của tam giác nếu và chỉ nếu \(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  = \overrightarrow 0 \)\( \Leftrightarrow \overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC}  = 3\overrightarrow {MG} \) nên C đúng.

+) \(\overrightarrow {MA}  + 2\overrightarrow {MI}  = \overrightarrow {MG}  + \overrightarrow {GA}  + 2\left( {\overrightarrow {MG}  + \overrightarrow {GI} } \right)\)\( = 3\overrightarrow {MG}  + \left( {\overrightarrow {GA}  + 2\overrightarrow {GI} } \right) = 3\overrightarrow {MG} \) nên D đúng.

Chọn A.

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Học trực tuyến Lớp 10 tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, hoàn trả học phí nếu học không hiệu quả.