Bài 1.32 trang 32 SBT hình học 10


Giải bài 1.32 trang 32 sách bài tập hình học 10. Cho tứ giác ABCD...

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Đề bài

Cho tứ giác \(ABCD\). Gọi \(I\) và \(J\) lần lượt là trung điểm của hai đường chéo \(AC\) và \(BD\). Chứng minh \(\overrightarrow {AB}  + \overrightarrow {CD}  = 2\overrightarrow {IJ} \).

Phương pháp giải - Xem chi tiết

Xen điểm vào véc tơ \(\overrightarrow {IJ} \) rồi thực hiện cộng các véc tơ.

Lời giải chi tiết

Ta có: \(\overrightarrow {IJ}  = \overrightarrow {IA}  + \overrightarrow {AB}  + \overrightarrow {BJ} \)

\(\overrightarrow {IJ}  = \overrightarrow {IC}  + \overrightarrow {CD}  + \overrightarrow {DJ} \)

Cộng từng vế hai đẳng thức trên ta được

\(2\overrightarrow {IJ}  = \left( {\overrightarrow {IA}  + \overrightarrow {IC} } \right) + \left( {\overrightarrow {BJ}  + \overrightarrow {DJ} } \right)\)\( + \overrightarrow {AB}  + \overrightarrow {CD} \) \( = \overrightarrow {AB}  + \overrightarrow {CD} \)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

PH/HS Tham Gia Nhóm Lớp 10 Để Trao Đổi Tài Liệu, Học Tập Miễn Phí!