Trả lời câu hỏi 5 trang 35 SGK Đại số và Giải tích 11


Dựa vào các công thức cộng đã học...

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Dựa vào các công thức cộng đã học

\( sin(a + b) = sina cosb + sinb cosa;\\sin(a – b) = sina cosb - sinb cosa;\\cos(a + b) = cosa cosb – sina sinb;\\cos(a – b) = cosa cosb + sina sinb\)

và kết quả \(cos {\pi  \over 4} = sin{\pi  \over 4} ={{\sqrt 2 } \over 2}\), hãy chứng minh rằng:

LG a

\(sinx + cosx = \sqrt 2 cos(x - {\pi  \over 4}\));

Lời giải chi tiết:

\(sin⁡x + cos⁡x = \sqrt 2.({{\sqrt 2 } \over 2} sin⁡x + {{\sqrt 2 } \over 2} cos⁡x )\)

\(= \sqrt 2.(sin⁡ {\pi  \over 4} sin⁡x + cos⁡{\pi  \over 4} cos⁡x )\)

\(= \sqrt 2.cos⁡(x - {\pi  \over 4})\)

Cách khác:

\(\sqrt 2 cos(x - \frac {\pi}{4})\\= \sqrt 2.(cosx.cos {\frac {\pi}{4}} + sinx.sin {\frac {\pi}{4}})\)

\(= \sqrt 2.(\frac{\sqrt 2}{2}.cosx + \frac{\sqrt 2}{2}.sinx)\\= \sqrt 2.\frac{\sqrt 2}{2}.cosx + \sqrt 2.\frac{\sqrt 2}{2}.sinx\\= cosx + sinx \)(đpcm)

LG b

\(sin x – cosx = \sqrt 2 sin(x - {\pi  \over 4}\)).

Lời giải chi tiết:

\(sin⁡x - cos⁡x = \sqrt 2.({{\sqrt 2 } \over 2} sin⁡x - {{\sqrt 2 } \over 2}cos⁡x )\)

\(= \sqrt 2.(cos⁡{\pi  \over 4} sin⁡x - sin⁡ {\pi  \over 4} cos⁡x )\)

\(= \sqrt 2.sin⁡(x - {\pi  \over 4}\))

Cách khác:

\(\sqrt 2.sin(x - \frac{\pi}{4})\\= \sqrt 2.(sinx.cos {\frac{\pi}{4}} - sin {\frac{\pi}{4}}.cosx )\\= \sqrt 2.(\frac{\sqrt 2}{2}.sinx - \frac{\sqrt 2}{2}.cosx )\\= \sqrt 2.\frac{\sqrt 2}{2}.sinx - \sqrt 2.\frac{\sqrt 2}{2}.cosx\\= sinx – cosx \) (đpcm).

Loigiaihay.com


Bình chọn:
3.4 trên 9 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.