CHỈ CÒN 100 SLOT CHO 2K8 XUẤT PHÁT SỚM ÔN ĐGNL & ĐGTD 2026

ƯU ĐÃI 50% HỌC PHÍ + TẶNG MIỄN PHÍ BỘ SÁCH ĐỀ TỔNG HỢP

Chỉ còn 1 ngày
Xem chi tiết

Giải bài 4 trang 37 SGK Đại số và Giải tích 11


Giải các phương trình sau:

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Giải các phương trình sau:

LG a

2sin2x+sinxcosx3cos2x=02sin2x+sinxcosx3cos2x=0;

Phương pháp giải:

Phương trình: asin2x+bsinxcosx+ccos2x=dasin2x+bsinxcosx+ccos2x=d

TH 1: Xét cosx=0cosx=0 có là nghiệm của phương trình hay không?

TH 2: Khi cosx0cosx0.

+ Bước 1: Chia cả 2 vế của phương trình cho cos2xcos2x

Ta được: asin2xcos2x+bsinxcosx+c=dcos2xasin2xcos2x+bsinxcosx+c=dcos2x

-Vì tanx=sinxcosx;1cos2x=tan2x+1tanx=sinxcosx;1cos2x=tan2x+1 nên ta đưa phương trình về dạng:

atan2x+btanx+c=d(1+tan2x)(ad)tan2x+btanx+cd=0

+ Bước 2: Đặt t=tanx, giải phương trình bậc hai ẩn t và tìm các nghiệm t.

+ Bước 3: Giải phương trình lượng giác cơ bản của tan: tanx=tanαx=α+kπ(kZ) và đối chiếu với điều kiện.

Lời giải chi tiết:

2sin2x+sinxcosx3cos2x=0

+ TH1: cosx=0sin2x=1, khi đó ta có 2.1+00=0 (vô nghiệm)

cosx0xπ2+kπ(kZ)

+ TH2: Chia cả hai vế của phương trình cho cos2x ta được:

2sin2xcos2x+sinxcosx3=02tan2x+tanx3=0

Đặt t=tanx, khi đó phương trình trở thành: 2t2+t3=0[t=1t=32

Với t=1tanx=1x=π4+kπ(kZ)(tm)

Với t=32tanx=32

x=arctan(32)+kπ(kZ)(tm)

Vậy nghiệm của phương trình là x=π4+kπ(kZ) hoặc x=arctan(32)+kπ(kZ).

Quảng cáo

Lộ trình SUN 2026

LG b

3sin2x4sinxcosx+5cos2x=2;

Lời giải chi tiết:

3sin2x4sinxcosx+5cos2x=2

Khi cosx=0sin2x=1, khi đó ta có 3.10+0=2 (vô nghiệm)

cosx0xπ2+kπ(kZ)

Chia cả hai vế của phương trình cho cos2x ta được:

3sin2xcos2x4sinxcosx+5=2cos2x3tan2x4tanx+5=2(tan2x+1)tan2x4tanx+3=0

Đặt t=tanx, khi đó phương trình trở thành: t24t+3=0[t=1t=3

Với t=1tanx=1

x=π4+kπ(kZ)(tm)

Với t=3tanx=3

x=arctan3+kπ(kZ)(tm)

Vậy nghiệm của phương trình là x=π4+kπ(kZ) hoặc x=arctan3+kπ(kZ).

Cách 2:

Ta có thể đưa về cùng dạng với câu a, như sau:

3sin2x4sinxcosx+5cos2x=23sin2x4sinxcosx+5cos2x=2(sin2x+cos2x)3sin2x4sinxcosx+5cos2x=2sin2x+2cos2xsin2x4sinxcosx+3cos2x=0

Sau đó giải phương trình tương tự như câu .

LG c

sin2x+sin2x2cos2x=12 ;

Lời giải chi tiết:

sin2x+sin2x2cos2x=12sin2x+2sinxcosx2cos2x=122sin2x+4sinxcosx4cos2x=1

+TH1: cosx=0sin2x=1, khi đó ta có 2+00=1 (vô nghiệm)

cosx0xπ2+kπ(kZ)

+TH2: Chia cả hai vế của phương trình cho cos2x ta được:

2sin2xcos2x+4sinxcosx4=1cos2x2tan2x+4tanx4=tan2x+1tan2x+4tanx5=0

Đặt t=tanx, khi đó phương trình trở thành: t2+4t5=0[t=1t=5

Với t=1tanx=1x=π4+kπ(kZ)(tm)

Với t=5tanx=5

x=arctan(5)+kπ(kZ)(tm)

Vậy nghiệm của phương trình là x=π4+kπ(kZ) hoặc x=arctan(5)+kπ(kZ).

Cách 2:

sin2x+sin2x2cos2x=122sin2x+2sin2x4cos2x=12sin2x+2.2sinxcosx4cos2x=sin2x+cos2xsin2x+4sinxcosx5cos2x=0

Sau đó thực hiện giải câu hỏi như câu a.

LG d

2cos2x33sin2x4sin2x=4.

Lời giải chi tiết:

2cos2x33sin2x4sin2x=42cos2x63sinxcosx4sin2x=4

Khi cosx=0sin2x=1, khi đó ta có 0+04=4x=π2+kπ(kZ) là nghiệm của phương trình.

Khi cosx0xπ2+kπ(kZ)

Chia cả hai vế của phương trình cho cos2x ta được:

263sinxcosx4sin2xcos2x=4cos2x263tanx4tan2x=4tan2x463tanx=6tanx=13x=π6+kπ(kZ)

Vậy nghiệm của phương trình là x=π2+kπ(kZ) hoặc x=π6+kπ(kZ).

Cách 2:

2cos2x33sin2x4sin2x=42cos2x33.2sinxcosx4sin2x=4(sin2x+cos2x)2cos2x63sinxcosx4sin2x=4sin2x4cos2x6cos2x63sinxcosx=06cosx(cosx3sinx)=0[cosx=0cosx3sinx=0[cosx=0cosx=3sinx[cosx=0cosxsinx=3[cosx=0cotx=3[x=π2+kπx=π6+kπ

Loigiaihay.com


Bình chọn:
4.3 trên 79 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.