Bài 2 trang 36 SGK Đại số và Giải tích 11


Giải bài 2 trang 36 SGK Đại số và Giải tích 11. Giải các phương trình sau.

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Giải các phương trình sau:

LG a

\(2co{s^2}x{\rm{ }} - {\rm{ }}3cosx{\rm{ }} + {\rm{ }}1{\rm{ }} = {\rm{ }}0\);

Phương pháp giải:

Đặt \(t=cosx\), đưa về phương trình bậc hai ẩn t, giải phương trình bậc hai ẩn t sau đó giải các phương trình lượng giác cơ bản của cos.

Lời giải chi tiết:

Đặt \( t = cosx, t \in [-1 ; 1]\) ta được phương trình:

\(\begin{array}{l}2{t^2} - 3t + 1 = 0 \Leftrightarrow \left[ \begin{array}{l}t = 1\,\,\,\left( {tm} \right)\\t = \frac{1}{2}\,\,\,\left( {tm} \right)\end{array} \right.\\+ )\,\,t = 1 \Leftrightarrow \cos x = 1 \Leftrightarrow x = k2\pi \,\,\,\left( {k \in Z} \right)\\+ )\,\,t = \frac{1}{2} \Leftrightarrow \cos x = \frac{1}{2} \Leftrightarrow x = \pm \frac{\pi }{3} + k2\pi \,\,\,\left( {k \in Z} \right)\end{array}\)

Vậy \(x = {\rm{ }}k2\pi \) hoặc \(x{\rm{ }} =  \pm {\pi  \over 3} + {\rm{ }}k2\pi \) \((k\in\mathbb{Z})\).

LG b

\(2sin2x{\rm{ }} + \sqrt 2 sin4x{\rm{ }} = {\rm{ }}0\).

Phương pháp giải:

+) Sử dụng công thức nhân đôi \(\sin 4x = 2\sin 2x\cos 2x\)

+) Đặt nhân tử chung, đưa phương trình về dạng tích.

+) Giải các phương trình lượng giác cơ bản của sin và cos.

Lời giải chi tiết:

\(\begin{array}{l}\,\,\,2\sin 2x + \sqrt 2 \sin 4x = 0\\\Leftrightarrow 2\sin 2x + 2\sqrt 2 \sin 2x\cos 2x = 0\\\Leftrightarrow 2\sin 2x\left( {1 + \sqrt 2 \cos 2x} \right) = 0\\\Leftrightarrow \left[ \begin{array}{l}\sin 2x = 0\\1 + \sqrt 2 \cos 2x = 0\end{array} \right.\\\Leftrightarrow \left[ \begin{array}{l}\sin 2x = 0\\\cos 2x = - \frac{1}{{\sqrt 2 }}\end{array} \right.\\\Leftrightarrow \left[ \begin{array}{l}2x = k\pi \\2x = \pm \frac{{3\pi }}{4} + k2\pi \end{array} \right.\\\Leftrightarrow \left[ \begin{array}{l}x = \frac{{k\pi }}{2}\\x = \pm \frac{{3\pi }}{8} + k\pi \end{array} \right.\,\,\,\,\left( {k \in Z} \right)\end{array}\)

Vậy nghiệm của phương trình là \(x = \frac{{k\pi }}{2}\) hoặc \(x =  \pm \frac{{3\pi }}{8} + k\pi \,\,\,\left( {k \in Z} \right)\).

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.3 trên 51 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

>>KHOÁ NỀN TẢNG LỚP 12 DÀNH CHO 2K4 NĂM 2022 học sớm chiếm lợi thế luyện thi TN THPT & ĐH


Gửi bài