Bài 6 trang 37 SGK Đại số và Giải tích 11


Giải bài 6 trang 37 SGK Đại số và Giải tích 11. Giải các phương trình sau.

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Giải các phương trình sau:

LG a

\(\tan (2x + 1)\tan (3x - 1) = 1\)

Phương pháp giải:

+) Tìm ĐKXĐ.

+) Sử dụng công thức \({1 \over {\tan x}} = \cot x = \tan \left( {{\pi  \over 2} - x} \right)\)

+) Đưa phương trình về dạng phương trình lượng giác cơ bản của tan: \(\tan x = \tan \alpha  \Leftrightarrow x = \alpha  + k\pi \,\,\left( {k \in Z} \right)\)

Lời giải chi tiết:

\(a)\,\,\tan \left( {2x + 1} \right)\tan \left( {3x - 1} \right) = 1\)

ĐK: \(\left\{ \matrix{  \cos \left( {2x + 1} \right) \ne 0 \hfill \cr   \cos \left( {3x - 1} \right) \ne 0 \hfill \cr}  \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}
2x + 1 \ne \frac{\pi }{2} + k\pi \\
3x - 1 \ne \frac{\pi }{2} + k\pi
\end{array} \right. \) \(\Leftrightarrow \left\{ \begin{array}{l}
2x \ne \frac{\pi }{2} - 1 + k\pi \\
3x \ne \frac{\pi }{2} + 1 + k\pi
\end{array} \right.  \) \( \Leftrightarrow \left\{ \begin{array}{l}
x \ne \frac{\pi }{4} - \frac{1}{2} + \frac{{k\pi }}{2}\\
x \ne \frac{\pi }{6} + \frac{1}{3} + \frac{{k\pi }}{3}
\end{array} \right.\)

\(\eqalign{  & pt \Leftrightarrow \tan \left( {2x + 1} \right) = {1 \over {\tan \left( {3x - 1} \right)}} \cr   &  \Leftrightarrow \tan \left( {2x + 1} \right) = \cot \left( {3x - 1} \right)\cr & \Leftrightarrow \tan \left( {2x + 1} \right) = \tan \left( {{\pi  \over 2} - 3x + 1} \right)  \cr   &  \Leftrightarrow 2x + 1 = {\pi  \over 2} - 3x + 1 + k\pi   \cr   &  \Leftrightarrow 5x = {\pi  \over 2} + k\pi   \cr   &  \Leftrightarrow x = {\pi  \over {10}} + {{k\pi } \over 5}\,\,\left( {k \in Z} \right)\,\,\left( {tm} \right) \cr} \)

Vậy nghiệm của phương trình là \(x = {\pi  \over {10}} + {{k\pi } \over 5}\,\,\left( {k \in Z} \right)\).

LG b

\(\tan x + \tan \left( {x + {\pi  \over 4}} \right) = 1\)

Phương pháp giải:

+) Tìm ĐKXĐ.

+) Sử dụng công thức \(\tan \left( {a + b} \right) = {{\tan a + \tan b} \over {1 - \tan a\tan b}}\)

+) Đặt \(t = \tan x\), đưa phương trình về dạng phương trình bậc hai ẩn t, giải phương trình tìm nghiệm t.

+) Giải phương trình lượng giác cơ bản của tan: \(\tan x = \tan \alpha  \Leftrightarrow x = \alpha  + k\pi \,\,\left( {k \in Z} \right)\)

Lời giải chi tiết:

\(b)\,\,\tan x + \tan \left( {x + {\pi  \over 4}} \right) = 1\)

ĐK: \(\left\{ \matrix{  \cos x \ne 0 \hfill \cr   \cos \left( {x + {\pi  \over 4}} \right) \ne 0  \hfill \cr}  \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}
x \ne \frac{\pi }{2} + k\pi \\
x + \frac{\pi }{4} \ne \frac{\pi }{2} + k\pi
\end{array} \right. \) \(\Leftrightarrow \left\{ \begin{array}{l}
x \ne \frac{\pi }{2} + k\pi \\
x \ne \frac{\pi }{4} + k\pi
\end{array} \right.\)

Khi đó,

\(PT \Leftrightarrow \tan x + \frac{{\tan x + \tan \frac{\pi }{4}}}{{1 - \tan x\tan \frac{\pi }{4}}} = 1\)

\(\eqalign{  & \Leftrightarrow \tan x + {{\tan x + 1} \over {1 - \tan x}} = 1  \cr   &  \Leftrightarrow \tan x - {\tan ^2}x + \tan x + 1 = 1 - \tan x  \cr   &  \Leftrightarrow {\tan ^2}x - 3\tan x = 0  \cr   &  \Leftrightarrow \tan x\left( {\tan x - 3} \right) = 0  \cr   &  \Leftrightarrow \left[ \matrix{  \tan x = 0 \hfill \cr   \tan x = 3 \hfill \cr}  \right.  \cr   &  \Leftrightarrow \left[ \matrix{  x = k\pi  \hfill \cr   x = \arctan 3 + k\pi  \hfill \cr}  \right.\,\,\,\left( {k \in Z} \right)  (tm) \cr} \)

Vậy nghiệm của phương trình là \(x = k\pi \) hoặc \(x = \arctan 3 + k\pi \,\,\left( {k \in Z} \right)\).

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.4 trên 57 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

>>KHOÁ NỀN TẢNG LỚP 12 DÀNH CHO 2K4 NĂM 2022 học sớm chiếm lợi thế luyện thi TN THPT & ĐH


Gửi bài