Bài 6 trang 37 SGK Đại số và Giải tích 11

Bình chọn:
4.3 trên 47 phiếu

Giải bài 6 trang 37 SGK Đại số và Giải tích 11. Giải các phương trình sau.

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Giải các phương trình sau:

LG a

\(\tan (2x + 1)\tan (3x - 1) = 1\)

Phương pháp giải:

+) Tìm ĐKXĐ.

+) Sử dụng công thức \({1 \over {\tan x}} = \cot x = \tan \left( {{\pi  \over 2} - x} \right)\)

+) Đưa phương trình về dạng phương trình lượng giác cơ bản của tan: \(\tan x = \tan \alpha  \Leftrightarrow x = \alpha  + k\pi \,\,\left( {k \in Z} \right)\)

Lời giải chi tiết:

\(a)\,\,\tan \left( {2x + 1} \right)\tan \left( {3x - 1} \right) = 1\)

ĐK: \(\left\{ \matrix{  \cos \left( {2x + 1} \right) \ne 0 \hfill \cr   \cos \left( {3x - 1} \right) \ne 0 \hfill \cr}  \right.\)

\(\eqalign{  & pt \Leftrightarrow \tan \left( {2x + 1} \right) = {1 \over {\tan \left( {3x - 1} \right)}} = \cot \left( {3x - 1} \right)  \cr   &  \Leftrightarrow \tan \left( {2x + 1} \right) = \tan \left( {{\pi  \over 2} - 3x + 1} \right)  \cr   &  \Leftrightarrow 2x + 1 = {\pi  \over 2} - 3x + 1 + k\pi   \cr   &  \Leftrightarrow 5x = {\pi  \over 2} + k\pi   \cr   &  \Leftrightarrow x = {\pi  \over {10}} + {{k\pi } \over 5}\,\,\left( {k \in Z} \right)\,\,\left( {tm} \right) \cr} \)

Vậy nghiệm của phương trình là \(x = {\pi  \over {10}} + {{k\pi } \over 5}\,\,\left( {k \in Z} \right)\).

LG b

\(\tan x + \tan \left( {x + {\pi  \over 4}} \right) = 1\)

Phương pháp giải:

+) Tìm ĐKXĐ.

+) Sử dụng công thức \(\tan \left( {a + b} \right) = {{\tan a + \tan b} \over {1 - \tan a\tan b}}\)

+) Đặt \(t = \tan x\), đưa phương trình về dạng phương trình bậc hai ẩn t, giải phương trình tìm nghiệm t.

+) Giải phương trình lượng giác cơ bản của tan: \(\tan x = \tan \alpha  \Leftrightarrow x = \alpha  + k\pi \,\,\left( {k \in Z} \right)\)

Lời giải chi tiết:

\(b)\,\,\tan x + \tan \left( {x + {\pi  \over 4}} \right) = 1\)

ĐK: \(\left\{ \matrix{  \cos x \ne 0 \hfill \cr   \cos \left( {x + {\pi  \over 4}} \right) \ne 0 \hfill \cr   \tan x \ne 1 \hfill \cr}  \right.\)

\(\eqalign{  & pt \Leftrightarrow \tan x + {{\tan x + 1} \over {1 - \tan x}} = 1  \cr   &  \Leftrightarrow \tan x - {\tan ^2}x + \tan x + 1 = 1 - \tan x  \cr   &  \Leftrightarrow {\tan ^2}x - 3\tan x = 0  \cr   &  \Leftrightarrow \tan x\left( {\tan x - 3} \right) = 0  \cr   &  \Leftrightarrow \left[ \matrix{  \tan x = 0 \hfill \cr   \tan x = 3 \hfill \cr}  \right.  \cr   &  \Leftrightarrow \left[ \matrix{  x = k\pi  \hfill \cr   x = \arctan 3 + k\pi  \hfill \cr}  \right.\,\,\,\left( {k \in Z} \right)  (tm) \cr} \)

Vậy nghiệm của phương trình là \(x = k\pi \) hoặc \(x = \arctan 3 + k\pi \,\,\left( {k \in Z} \right)\).

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

>>Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Góp ý Loigiaihay.com, nhận quà liền tay