Bài 8 trang 54 SGK Hình học 11

Bình chọn:
4.4 trên 17 phiếu

Giải bài 8 trang 54 SGK Hình học 11. Cho tứ diện ABCD. Gọi M và N lần lượt là trung điểm của các cạnh AB và CD trên cạnh AD lấy điểm P không trùng với trung điểm của AD

Đề bài

Cho tứ diện \(ABCD\). Gọi \(M\) và \(N\) lần lượt là trung điểm của các cạnh \(AB\) và \(CD\) trên cạnh \(AD\) lấy điểm \(P\) không trùng với trung điểm của \(AD\)

a) Gọi \(E\) là giao điểm của đường thẳng \(MP\) và đường thẳng \(BD\). Tìm giao tuyến của hai mặt phẳng \((PMN)\) và \((BCD)\)

b) Tìm giao điểm của mặt phẳng \((PMN)\) và \(BC\).

Phương pháp giải - Xem chi tiết

Muốn tìm giao tuyến của hai mặt phẳng, ta tìm hai điểm chung của hai mặt phẳng đó.

Lời giải chi tiết

a) Ta có:

\(\begin{array}{l}
\left\{ \begin{array}{l}
E \in BD \subset \left( {BCD} \right) \Rightarrow E \in \left( {BCD} \right)\\
E \in MP \subset \left( {MNP} \right) \Rightarrow E \in \left( {MNP} \right)
\end{array} \right.\\ \Rightarrow E \in \left( {BCD} \right) \cap \left( {MNP} \right)\\
\left\{ \begin{array}{l}
N \in CD \subset \left( {BCD} \right) \Rightarrow N \in \left( {BCD} \right)\\
N \in \left( {MNP} \right)
\end{array} \right.\\ \Rightarrow N \in \left( {BCD} \right) \cap \left( {MNP} \right)\\
\Rightarrow NE = \left( {BCD} \right) \cap \left( {MNP} \right)
\end{array}\)

b) Trong mặt phẳng \((BCD)\) gọi \(Q\) là giao điểm của \(NE\) và \(BC\) ta có:

\(\left\{ \begin{array}{l}
Q \in BC\\
Q \in NE \subset \left( {MNP} \right) \Rightarrow Q \in \left( {MNP} \right)
\end{array} \right.\\ \Rightarrow Q = BC \cap \left( {MNP} \right)\)

loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

Các bài liên quan: - Bài 1. Đại cương về đường thẳng và mặt phẳng

>>Học trực tuyến các môn lớp 11, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu