Bài 1 trang 53 SGK Hình học 11


Đề bài

Cho điểm \(A\) không nằm trong mặt phẳng \((α)\) chứa tam giác \(BCD\). Lấy \(E,F\) là các điểm lần lượt nằm trên các cạnh \(AB, AC\).

a) Chứng minh đường thẳng \(EF\) nằm trong mặt phẳng \((ABC)\).

b) Khi \(EF\) và \(BC\) cắt nhau tại \(I\), chứng minh \(I\) là điểm chung của hai mặt phẳng \((BCD)\) và \((DEF)\).

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

a) Chỉ ra \(E \in \left( {ABC} \right);\,\,F \in \left( {ABC} \right)\).

b) Chứng minh \(I \in \left( {DEF} \right);\,\,I \in \left( {BCD} \right)\).

Lời giải chi tiết

a) Ta có: 

\(\left\{ \begin{array}{l}
E \in AB,\,\,AB \subset \left( {ABC} \right) \Rightarrow E \in \left( {ABC} \right)\\
F \in AC,\,\,AC \subset \left( {ABC} \right) \Rightarrow F \in \left( {ABC} \right)
\end{array} \right.\)

Theo tính chất 3, đường thẳng \(EF\) có hai điểm \(E, F\) cùng thuộc mặt phẳng \((ABC)\) nên \( EF \subset \left( {ABC} \right)\)

b) Ta có:

\(\left\{ \begin{array}{l}I \in EF,\,\,EF \subset \left( {DEF} \right) \Rightarrow I \in \left( {DEF} \right)\\I \in BC,\,\,BC \subset \left( {BCD} \right) \Rightarrow I \in \left( {BCD} \right)\end{array} \right. \)\(\,\Rightarrow I\) là điểm chung của hai mặt phẳng \((BCD)\) và \((DEF)\).

Loigiaihay.com


Bình chọn:
4.7 trên 72 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

2k7 Tham gia ngay group chia sẻ, trao đổi tài liệu học tập mễn phí

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.