Bài 2 trang 53 SGK Hình học 11


Giải bài 2 trang 53 SGK Hình học 11. Gọi M là giao điểm của đường thẳng d và mặt phẳng (α ). Chứng minh M là điểm chung của (α ) với một mặt phẳng bất kì chứa d

Đề bài

Gọi \(M\) là giao điểm của đường thẳng \(d\) và mặt phẳng \((α )\). Chứng minh \(M\) là điểm chung của \((α )\) với một mặt phẳng bất kì chứa \(d\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Gọi \((β)\) là mặt phẳng bất kì chứa \(d\), chứng minh \(\left\{ \begin{array}{l}M \in \left( \alpha \right)\\M \in \left( \beta \right)\end{array} \right.\)

Lời giải chi tiết

\(M = d \cap \left( \alpha  \right) \Rightarrow M \in \left( \alpha  \right)\)

Gọi \((β)\) là mặt phẳng bất kì chứa \(d\), ta có \(\left\{ \matrix{M \in d \hfill \cr d \subset (\beta ) \hfill \cr} \right. \Rightarrow M \in (\beta )\)

Vậy \(M\) là điểm chung của \((α )\) và mọi mặt phẳng \((β)\) chứa \(d\).

 Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.1 trên 16 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.


Góp ý Loigiaihay.com, nhận quà liền tay
Gửi bài