Bài 2 trang 53 SGK Hình học 11

Bình chọn:
4 trên 5 phiếu

Giải bài 2 trang 53 SGK Hình học 11. Gọi M là giao điểm của đường thẳng d và mặt phẳng (α ). Chứng minh M là điểm chung của (α ) với một mặt phẳng bất kì chứa d

Đề bài

Gọi \(M\) là giao điểm của đường thẳng \(d\) và mặt phẳng \((α )\). Chứng minh \(M\) là điểm chung của \((α )\) với một mặt phẳng bất kì chứa \(d\)

Phương pháp giải - Xem chi tiết

Gọi \((β)\) là mặt phẳng bất kì chứa \(d\), chứng minh \(\left\{ \begin{array}{l}M \in \left( \alpha \right)\\M \in \left( \beta \right)\end{array} \right.\)

Lời giải chi tiết

\(M = d \cap \left( \alpha  \right) \Rightarrow M \in \left( \alpha  \right)\)

Gọi \((β)\) là mặt phẳng bất kì chứa \(d\), ta có \(\left\{ \matrix{M \in d \hfill \cr d \subset (\beta ) \hfill \cr} \right. \Rightarrow M \in (\beta )\)

Vậy \(M\) là điểm chung của \((α )\) và mọi mặt phẳng \((β)\) chứa \(d\).

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 11 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến các môn lớp 11, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu



Các bài liên quan