Bài 2 trang 53 SGK Hình học 11


Đề bài

Gọi \(M\) là giao điểm của đường thẳng \(d\) và mặt phẳng \((α )\). Chứng minh \(M\) là điểm chung của \((α )\) với một mặt phẳng bất kì chứa \(d\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Gọi \((β)\) là mặt phẳng bất kì chứa \(d\), chứng minh \(\left\{ \begin{array}{l}M \in \left( \alpha \right)\\M \in \left( \beta \right)\end{array} \right.\)

Quảng cáo
decumar

Lời giải chi tiết

\(M = d \cap \left( \alpha  \right) \Rightarrow M \in \left( \alpha  \right)\)

Gọi \((β)\) là mặt phẳng bất kì chứa \(d\), ta có \(\left\{ \matrix{M \in d \hfill \cr d \subset (\beta ) \hfill \cr} \right. \Rightarrow M \in (\beta )\)

Vậy \(M\) là điểm chung của \((α )\) và mọi mặt phẳng \((β)\) chứa \(d\).

 Loigiaihay.com


Bình chọn:
4.5 trên 32 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

2K7 tham gia ngay group để nhận thông tin thi cử, tài liệu miễn phí, trao đổi học tập nhé!

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.