Bài 4 trang 53 SGK Hình học 11


Giải bài 4 trang 53 SGK Hình học 11. Cho bốn điểm A, B, C và D không đồng phẳng

Đề bài

Cho bốn điểm \(A, B, C\) và \(D\) không đồng phẳng. Gọi \({G_{A}}^{}\), \({G_{B}}^{}\), \({G_{C},{G_{D}}^{}}^{}\) lần lượt là trọng tâm của tam giác \(BCD, CDA, ABD, ABC\). Chứng minh rằng, \(A{G_{A},B{G_{B},C{G_{C},D{G_{D}}^{}}^{}}^{}}^{}\) đồng quy.

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Sủ dụng kết quả bài tập 3:

Cho ba đường thẳng \({d_{1,}}{d_2},{d_3}\) không cùng nằm trong một mặt phẳng và cắt nhau từng đôi một. Khi đó ba đường thẳng trên đồng quy.

Lời giải chi tiết

Gọi N là trung điểm CD.

+ GA là trọng tâm ΔBCD

GA  trung tuyến BN (ANB)

AGA  (ANB)

GB là trọng tâm ΔACD

GB  trung tuyến AN (ANB)

BGB  (ANB).

Trong (ANB): AGA không song song với BGB

AGA cắt BGB tại O

+ Chứng minh tương tự: BGB cắt CGC; CGC cắt AGA.

+ CGC không nằm trong (ANB) AGA; BGB; CGC không đồng phẳng và đôi một cắt nhau.

Áp dụng kết quả bài 3 ⇒ AGA; BGB; CGC đồng quy tại O

+ Chứng minh hoàn toàn tương tự: AGA; BGB; DGD đồng quy tại O

Vậy AGA; BGB ; CGC; DGD đồng quy tại O (đpcm).

Loigiaihay.com


Bình chọn:
4.1 trên 26 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

>>Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu


Gửi bài