Bài 5 trang 92 SGK Đại số và Giải tích 11

Bình chọn:
4.4 trên 5 phiếu

Giải bài 5 trang 92 SGK Đại số và Giải tích 11. Trong các dãy số sau, dãy số nào bị chặn dưới, dãy số nào bị chặn trên, dãy số nào bị chặn?

Đề bài

Trong các dãy số sau, dãy số nào bị chặn dưới, dãy số nào bị chặn trên, dãy số nào bị chặn?

a) \(u_n= 2n^2-1\);                     b) \( u_n=\frac{1}{n(n+2)}\)

c) \(u_n= \frac{1}{2n^{2}-1}\);                        d) \(u_n= sinn + cosn\)

Phương pháp giải - Xem chi tiết

Dãy số \(\left( {{u_n}} \right)\) được gọi là bị chặn trên nếu tồn tại một số M sao cho \({u_n} \le M\,\,\forall n \in N*\).

Dãy số \(\left( {{u_n}} \right)\) được gọi là bị chặn dưới  nếu tồn tại một số m sao cho \({u_n} \ge m\,\,\forall n \in N*\).

Dãy số \(\left( {{u_n}} \right)\) được gọi là bị chặn nếu nó vừa bị chặn trên vừa bị chặn dưới, tức là tồn tại các số m, M sao cho \(m \le {u_n} \le M\,\,\forall n \in N*\).

Lời giải chi tiết

a) Dãy số bị chặn dưới vì \(u_n= 2n^2-1≥ 1\) với mọi \(n \in {\mathbb N}^*\)  và không bị chặn trên vì:

Với số \(M\) dương lớn bất kì, ta có \(2n^2-1 > M \Leftrightarrow n > \sqrt{\frac{M+1}{2}}\), tức là luôn tồn tại \( n ≥   \left [ \sqrt{\frac{M+1}{2}} \right ] + 1\) để  \(2 n^{2}- 1 > M\)

b) Dễ thấy \(u_n > 0 \,\, \forall n \in N^*\).
Mặt khác, vì:

\(\begin{array}{l}
\left\{ \begin{array}{l}
n \ge 1 \Rightarrow {n^2} \ge 1\\
2n \ge 2
\end{array} \right.\\ \Rightarrow n\left( {n + 2} \right) = {n^2} + 2n \ge 1 + 2 = 3\\
\Rightarrow \frac{1}{{n\left( {n + 2} \right)}} \le \frac{1}{3} \Rightarrow {u_n} \le \frac{1}{3}\,\,\forall n \in N^*.
\end{array}\)

Vậy dãy số bị chặn \(0 < u_n\) \(\leq \frac{1}{3}\) với mọi  \(n \in {\mathbb N}^*\)  
c) Ta có:

\(\begin{array}{l}
{n^2} \ge 1 \Leftrightarrow 2{n^2} \ge 2 \Leftrightarrow 2{n^2} - 1 \ge 1 > 0\\
\Rightarrow 0 < \frac{1}{{2{n^2} - 1}} \le 1\,\,\,\forall n \in N^*
\end{array}\)

Vậy \(0 < u_n ≤ 1 \,\, \forall n \in N^*\), tức dãy số bị chặn.
d) Ta có:

\(\begin{array}{l}
\sin n + \cos n = \sqrt 2 \left( {\frac{1}{{\sqrt 2 }}\sin n + \frac{1}{{\sqrt 2 }}\cos n} \right) \\= \sqrt 2 \sin \left( {n + \frac{\pi }{4}} \right)\\
\Rightarrow - \sqrt 2 \le \sin n + \cos n \le \sqrt 2 \,\,\forall n \in {N^*}
\end{array}\)

Vậy \(-\sqrt 2  \le u_n \le \sqrt 2 \,\, \forall n \in {\mathbb N}^*\), tức là dãy số là dãy bị chặn.
 
loigiaihay.com
 

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

Các bài liên quan: - Bài 2. Dãy số

>>Học trực tuyến các môn lớp 11, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu