Câu hỏi 6 trang 90 SGK Đại số và Giải tích 11

Bình chọn:
4.9 trên 7 phiếu

Giải câu hỏi 6 trang 90 SGK Đại số và Giải tích 11. Chứng minh các bất đẳng thức ...

Đề bài

Chứng minh các bất đẳng thức \(\displaystyle{n \over {{n^2} + 1}} \le {1 \over 2};\,\,\,{{{n^2} + 1} \over {2n}} \ge 1\) với mọi n∈N*

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Xét hiệu hai vế cần đánh giá và so sánh với \(0\).

Lời giải chi tiết

\(\eqalign{
& {{{n^2}} \over {{n^2} + 1}} - {1 \over 2} = {{2n - ({n^2} + 1)} \over {2({n^2} + 1)}} = {{ - {{(n - 1)}^2}} \over {2({n^2} + 1)}} \le 0;\,\,\forall n \in {N^*} \cr
& \Rightarrow {n \over {{n^2} + 1}} < {1 \over 2};\,\,\forall n \in {N^*} \cr
& {{{n^2} + 1} \over {2n}} - 1 = {{{n^2} + 1 - 2n} \over {2n}} = {{{{(n - 1)}^2}} \over {2n}} \ge 0;\,\,\forall n \in N* \cr
& \Rightarrow {{{n^2} + 1} \over {2n}} \ge 1;\,\,\forall n \in {N^*} \cr} \)

 Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

Các bài liên quan: - Bài 2. Dãy số

>>Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Góp ý Loigiaihay.com, nhận quà liền tay