Bài 4 trang 92 SGK Đại số và Giải tích 11

Bình chọn:
4.4 trên 20 phiếu

Giải bài 4 trang 92 SGK Đại số và Giải tích 11. Xét tính tăng, giảm của các dãy số biết:

Đề bài

Xét tính tăng, giảm của các dãy số \(u_n\) biết:  

a) \(u_n= \dfrac{1}{n}-2\) ;              b) \(u_n= \dfrac{n-1}{n+1}\);

c) \({u_n} = {( - 1)^n}({2^n} + 1)\)  d) \(u_n= \dfrac{2n+1}{5n+2}\)

Phương pháp giải - Xem chi tiết

Để xét tính tăng, giảm có dãy số ta có 2 cách sau: 

Cách 1: Xét hiệu \(u_{n+1}-u_n\)

+) Nếu hiệu trên lớn hơn \(0\) chứng tỏ \(u_{n+1}>u_n\) do đó dãy số là dãy tăng.

+) Nếu hiệu trên nhỏ hơn \(0\) chứng tỏ \(u_{n+1}<u_n\) do đó dãy số là dãy giảm.

Cách 2: Xét thương \(\dfrac{{{u_{n + 1}}}}{{{u_n}}}\)

+) Nếu thương trên lớn hơn \(1\) chứng tỏ \(u_{n+1}>u_n\) do đó dãy số là dãy tăng.

+) Nếu thương trên nhỏ hơn \(1\) chứng tỏ \(u_{n+1}<u_n\) do đó dãy số là dãy giảm.

Lời giải chi tiết

a) Xét hiệu

\({u_{n + 1}} - {u_n} = \dfrac{1}{{n + 1}} - 2 - \left( {\dfrac{1}{n} - 2} \right) \) \(= \dfrac{1}{{n + 1}} - \dfrac{1}{n}\)

Vì \(n + 1 > n \Rightarrow \dfrac{1}{{n + 1}} < \dfrac{1}{n}\) \( \Rightarrow \dfrac{1}{{n + 1}} - \dfrac{1}{n} < 0\)

\( \Rightarrow {u_{n + 1}} - {u_n} < 0\,\,\forall n \in N*\)

Vậy dãy số đã cho là dãy số giảm.

b) Xét hiệu \(u_{n+1}-u_n= \dfrac{n+1-1}{n+1+1}-\dfrac{n-1}{n+1}\) \(=\dfrac{n}{n+2}-\dfrac{n-1}{n+1}\) \( = \dfrac{{n\left( {n + 1} \right) - \left( {n - 1} \right)\left( {n + 2} \right)}}{{\left( {n + 1} \right)\left( {n + 2} \right)}}\) \(=  \dfrac{n^{2}+n- n^{2}-n+2}{(n+1)(n+2)}\) \(=\dfrac{2}{(n+1)(n+2)}>0\)

\(\Rightarrow u_{n+1}> u_n \forall n \in  {\mathbb N}\)

Vậy dãy số đã cho là dãy số tăng.

c) Các số hạng ban đầu có thừa số \((-1)^n\) (dãy đan dấu) là dãy số không tăng và cũng không giảm.

Vì:

+) \((-1)^n>0\) nếu \(n\) chẵn, do đó \(u_n>0\)

+) \((-1)^n<0\) nếu \(n\) lẻ, do đó \(u_n<0\)

d) Xét thương \( \dfrac{u_{n+1}}{u_{n}}\) (vì \(u_n> 0\)  với mọi \(n \in  {\mathbb N}^*\) ) rồi so sánh với \(1\).

Ta có \( \dfrac{u_{n+1}}{u_{n}}\) \( =\dfrac{2n+3}{5n+7}.\dfrac{5n+2}{2n+1}\) \(=\dfrac{10n^{2}+19n+6}{10n^{2}+19n+7}<1\) với mọi \(n \in  {\mathbb N}^*\)

(Vì \(10{n^2} + 19n + 6 < 10{n^2} + 19n + 7\))

Vậy dãy số đã cho là dãy số giảm dần.

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

Các bài liên quan: - Bài 2. Dãy số

>>Học trực tuyến luyện thi THPTQG, Đại học 2020, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới nâng cao.