Bài 1 trang 92 SGK Đại số và Giải tích 11


Giải bài 1 trang 92 SGK Đại số và Giải tích 11. Viết năm số hạng đầu của các dãy số có số hạng tổng quát

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Viết năm số hạng đầu của các dãy số có số hạng tổng quát ucho bởi công thức:

LG a

\(u_n=\dfrac{n}{2^{n}-1}\)

Phương pháp giải:

Muốn viết 5 số hạng đầu tiên của dãy số đã cho ta tính \(u_n\) lần lượt tại \(n=1;2;3;4;5\).

Lời giải chi tiết:

Ta có: \({u_1} = \dfrac{1}{{{2^1} - 1}} = 1\); \({u_2} = \dfrac{2}{{{2^2} - 1}} = \dfrac{2}{3}\); \({u_3} = \dfrac{3}{{{2^3} - 1}} = \dfrac{3}{7}\); \({u_4} = \dfrac{4}{{{2^4} - 1}} = \dfrac{4}{{15}}\); \({u_5} = \dfrac{5}{{{2^5} - 1}} = \dfrac{5}{{31}}\)

Năm số hạng đầu của dãy số là:

\(u_1= 1\); \(u_2= \dfrac{2}{3}\), \( u_{3}=\dfrac{3}{7}; u_{4}=\dfrac{4}{15};u_{5}=\dfrac{5}{31}\)

LG b

\(u_n= \dfrac{2^{n}-1}{2^{n}+1}\)

Phương pháp giải:

Muốn viết 5 số hạng đầu tiên của dãy số đã cho ta tính \(u_n\) lần lượt tại \(n=1;2;3;4;5\).

Lời giải chi tiết:

Ta có: \({u_1} = \dfrac{{{2^1} - 1}}{{{2^1} + 1}} = \dfrac{1}{3}\); \({u_2} = \dfrac{{{2^2} - 1}}{{{2^2} + 1}} = \dfrac{3}{5}\); \({u_3} = \dfrac{{{2^3} - 1}}{{{2^3} + 1}} = \dfrac{7}{9}\); \({u_4} = \dfrac{{{2^4} - 1}}{{{2^4} + 1}} = \dfrac{{15}}{{17}}\); \({u_5} = \dfrac{{{2^5} - 1}}{{{2^5} + 1}} = \dfrac{{31}}{{33}}\).

Năm số hạng đầu của dãy số là \( u_{1}=\dfrac{1}{3},u_{2}=\dfrac{3}{5};u_{3}=\dfrac{7}{9};u_{4}=\dfrac{15}{17};u_{5}=\dfrac{31}{33}\)

LG c

\(u_n=(1+\dfrac{1}{n})^{n}\)

Phương pháp giải:

Muốn viết 5 số hạng đầu tiên của dãy số đã cho ta tính \(u_n\) lần lượt tại \(n=1;2;3;4;5\).

Lời giải chi tiết:

Ta có: \({u_1} = {\left( {1 + \dfrac{1}{1}} \right)^1} = 2\), \({u_2} = {\left( {1 + \dfrac{1}{2}} \right)^2} = \dfrac{9}{4}\); \({u_3} = {\left( {1 + \dfrac{1}{3}} \right)^3} = \dfrac{{64}}{{27}}\); \({u_4} = {\left( {1 + \dfrac{1}{4}} \right)^4} = \dfrac{{625}}{{256}}\); \({u_5} = {\left( {1 + \dfrac{1}{5}} \right)^5} = \dfrac{{7776}}{{3125}}\).

Năm số hạng đầu của dãy số là

\(u_1=2\); \( u_{2}=\dfrac{9}{4};u_{3}=\dfrac{64}{27};u_{4}=\dfrac{625}{256};u_{5}=\dfrac{7776}{3125}\)

LG d

\(u_n =\dfrac{n}{\sqrt{n^{2}+1}}\)

Phương pháp giải:

Muốn viết 5 số hạng đầu tiên của dãy số đã cho ta tính \(u_n\) lần lượt tại \(n=1;2;3;4;5\).

Lời giải chi tiết:

Ta có: \({u_1} = \dfrac{1}{{\sqrt {{1^2} + 1} }} = \dfrac{1}{{\sqrt 2 }}\), \({u_2} = \dfrac{2}{{\sqrt {{2^2} + 1} }} = \dfrac{2}{{\sqrt 5 }}\), \({u_3} = \dfrac{3}{{\sqrt {{3^2} + 1} }} = \dfrac{3}{{\sqrt {10} }}\), \({u_4} = \dfrac{4}{{\sqrt {{4^2} + 1} }} = \dfrac{4}{{\sqrt {17} }}\), \({u_5} = \dfrac{5}{{\sqrt {{5^2} + 1} }} = \dfrac{5}{{\sqrt {26} }}\).

Năm số hạng đầu của dãy số là 

\( u_{1}=\dfrac{1}{\sqrt{2}};u_{2}=\dfrac{2}{\sqrt{5}};u_{3}=\dfrac{3}{\sqrt{10}};\) \(u_{4}=\dfrac{4}{\sqrt{17}};u_{5}=\dfrac{5}{\sqrt{26}}\)

 Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.4 trên 20 phiếu

Các bài liên quan: - Bài 2. Dãy số

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

>>KHOÁ NỀN TẢNG LỚP 12 DÀNH CHO 2K4 NĂM 2022 học sớm chiếm lợi thế luyện thi TN THPT & ĐH


Gửi bài