Bài 2 trang 34 SGK Hình học 11

Bình chọn:
4 trên 21 phiếu

Giải bài 2 trang 34 SGK Hình học 11. Trong mặt phẳng tọa độ Oxy cho điểm A(-1;2) và đường thẳng d có phương trình 3x + y+ 1= 0. Tìm ảnh của A và.

Lựa chọn câu để xem lời giải nhanh hơn

Trong mặt phẳng tọa độ \(Oxy\) cho điểm \(A(-1;2)\) và đường thẳng \(d\) có phương trình \(3x + y+ 1= 0\). Tìm ảnh của \(A\) và \(d\)

LG a

Qua phép tịnh tiến theo vectơ \(v = (2;1)\)

Phương pháp giải:

\({T_{\overrightarrow v }}\left( A \right) = A' \Rightarrow \overrightarrow {AA'}  = \overrightarrow v \).

Ảnh của đường thẳng qua 1 phép tịnh tiến là một đường thẳng song song với đường thẳng ban đầu.

Lời giải chi tiết:

Gọi A’, d’ lần lượt là ảnh của A và d qua các phép biến hình. Dễ dàng kiểm tra được \(A \in d\)

\({T_{\overrightarrow v }}\left( A \right) = A' \Rightarrow \overrightarrow {AA'}  = \overrightarrow v  \) \(\Rightarrow \left\{ \matrix{  {x_{A'}} + 1 = 2 \hfill \cr   {y_{A'}} - 2 = 1 \hfill \cr}  \right. \) \(\Leftrightarrow \left\{ \matrix{  {x_{A'}} = 1 \hfill \cr   {y_{A'}} = 3 \hfill \cr}  \right. \Rightarrow A'\left( {1;3} \right)\)

Đường thẳng d’ là ảnh của d qua \({T_{\overrightarrow v }} \Rightarrow d'//d \Rightarrow \) phương trình đường thẳng d’ có dạng: \(3x + y + c = 0\,\,\left( {c \ne 1} \right)\)

\(A\left( { - 1;2} \right) \in d;\,\,{T_{\overrightarrow v }}\left( A \right) = A'\left( {1;3} \right) \) \(\Rightarrow A' \in d' \) \(\Rightarrow 3 + 3 + c = 0 \).

\(\Leftrightarrow c =  - 6\,\,\left( {tm} \right)\).

Vậy phương trình đường thẳng d’ là \(3x + y - 6 = 0\).

LG b

Qua phép đối xứng qua trục \(Oy\)

Phương pháp giải:

+) Phép đối xứng trục Oy biến điểm \(A\left( {x;y} \right)\) thành điểm \(A'\left( { - x;y} \right)\).

+) Tìm ảnh của đường thẳng d, ta lấy hai điểm A, B bất kì thuộc đường thẳng d, tìm ảnh A'; B' của hai điểm A, B qua phép đối xứng trục Oy, khi đó ảnh của đường thẳng d chính là đường thẳng A'B'.

Lời giải chi tiết:

\({D_{Oy}}\left( A \right) = A'\left( {1;2} \right)\)

Lấy điểm \(B\left( {0; - 1} \right) \in d \Rightarrow {D_{Oy}}\left( B \right) = B'\left( {0; - 1} \right)\).

Đường thẳng d’ là ảnh của d qua phép đối xứng trục Oy \( \Rightarrow d' \equiv A'B' \Rightarrow \) Phương trình đường thẳng d’ là:

\(\displaystyle{{x - 1} \over {0 - 1}} = {{y - 2} \over { - 1 - 2}} \Leftrightarrow 3x - 3 = y - 2 \) \(\Leftrightarrow 3x - y - 1 = 0\).

LG c

Qua phép đối xứng qua gốc tọa độ

Phương pháp giải:

+) Phép đối xứng qua gốc tọa độ biến \(A\left( {x;y} \right)\)  thành \(A'\left( { - x;-y} \right)\).

+) Ảnh của đường thẳng qua phép đối xứng là 1 đường thẳng song song với đường thẳng đã cho.

Lời giải chi tiết:

\({D_{\left( O \right)}}\left( A \right) = A'\left( {1; - 2} \right)\)

Đường thẳng d’ là ảnh của d qua \({D_{\left( O \right)}} \Rightarrow d'//d \Rightarrow \) phương trình đường thẳng d’ có dạng: \(3x + y + c = 0\,\,\left( {c \ne 1} \right)\)

\(A\left( { - 1;2} \right) \in d;\,\,{D_{\left( O \right)}}\left( A \right) = A'\left( {1; - 2} \right) \) \(\Rightarrow A' \in d' \Rightarrow 3 - 2 + c = 0 \)

\(\Leftrightarrow c =  - 1\,\,\left( {tm} \right)\).

Vậy phương trình đường thẳng d’ là \(3x + y - 1 = 0\).

LG d

Qua phép quay tâm \(O\) góc \( 90^{\circ}\)

Phương pháp giải:

Sử dụng biểu thức tọa độ của phép quay tâm O góc quay \(\alpha\) tìm ảnh của điểm A(x;y) là: \(\left\{ \begin{array}{l}x' = x\cos \alpha - y\sin \alpha \\y' = x\sin \alpha + y\cos \alpha \end{array} \right.\)

+) Ảnh của đường thẳng d qua phép quay tâm O góc \(90^0\) là đường thẳng vuông góc với d.

Lời giải chi tiết:

\({Q_{\left( {O;{{90}^0}} \right)}}\left( A \right) = A'\left( {x';y'} \right) \Rightarrow \) Tọa độ của điểm A là nghiệm của hệ phương trình \(\left\{ \matrix{  x' =  - 1.\cos 90 - 2.\sin 90 =  - 2 \hfill \cr   y' =  - 1.\sin 90 + 2.\cos 90 =  - 1 \hfill \cr}  \right. \Rightarrow A'\left( { - 2; - 1} \right)\)

Đường thẳng d’ là ảnh của d qua \({Q_{\left( {O;{{90}^0}} \right)}} \Rightarrow d' \bot d \Rightarrow \) phương trình đường thẳng d’ có dạng: \(x - 3y + c = 0\).

\(A\left( { - 1;2} \right) \in d;\,\,{Q_{\left( {O;{{90}^0}} \right)}}\left( A \right) = A'\left( { - 2; - 1} \right) \) \(\Rightarrow A' \in d' \Rightarrow  - 2 - 3\left( { - 1} \right) + c = 0 .\)

\(\Leftrightarrow c =  - 1\).

Vậy phương trình đường thẳng d’ là \(x - 3y - 1 = 0\).

 Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

>>Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Gửi văn hay nhận ngay phần thưởng