Lý thuyết Quy tắc dấu ngoặc Toán 6 KNTT với cuộc sống>
Lý thuyết Quy tắc dấu ngoặc Toán 6 KNTT với cuộc sống ngắn gọn, đầy đủ, dễ hiểu
Tổng hợp đề thi giữa kì 1 lớp 6 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Khoa học tự nhiên
1. Phép trừ hai số nguyên
Muốn trừ số nguyên \(a\) cho số nguyên \(b\), ta cộng \(a\) với số đối của b:
\(a - b = a + \left( { - b} \right)\)
Nhận xét: Phép trừ trong \(\mathbb{N}\) không phải bao giờ cũng thực hiện được, còn phép trừ trong \(\mathbb{Z}\) luôn thực hiện được.
Chú ý: Cho hai số nguyên \(a\) và \(b\). Ta gọi \(a - b\) là hiệu của \(a\) và \(b\) (\(a\) được gọi là số bị trừ, \(b\) là số trừ).
Ví dụ 1:
a) \(6 - 9 = 6 + \left( { - 9} \right) = - \left( {9 - 6} \right) = - 3\).
b) \(8 - \left( { - 4} \right) = 8 + 4 = 12\).
c) \( - 8 - \left( { - 9} \right) = - 8 + 9 = 9 - 8 = 1\).
Ví dụ 2:
Nhiệt độ trong phòng ướp lạnh đang là \({3^o}C\), bác Nhung vặn nút điều chỉnh giảm \({4^O}C\).Nhiệt độ phòng sau khi giảm là bao nhiêu độ.
Giải
Do bác Nhung giảm nhiệt độ đi \({4^o}C\), nên ta làm phép trừ:
\(3 - 4 = 3 + \left( { - 4} \right) = - \left( {4 - 3} \right) = - 1\).
Vậy nhiệt độ phòng ướp lạnh sau khi giảm là \( - {1^o}C\).
2. Quy tắc dấu ngoặc
Khi bỏ dấu ngoặc, nếu đằng trước dấu ngoặc:
- Có dấu “+”, thì vẫn giữ nguyên dấu của các số hạng trong ngoặc
\( + \left( {a + b - c} \right) = a + b - c\)
- Có dấu “-”, thì phải đổi dấu tất cả các số hạng trong ngoặc
\( - \left( {a + b - c} \right) = - a - b + c\)
Chú ý:
Trong một biểu thức, ta có thể:
+ Thay đổi tùy ý vị trí của các số hạng kèm theo dấu của chúng.
\(a - b - c = - b + a - c = - c - b + a.\)
+ Đặt dấu ngoặc để nhóm các số hạng một cách tùy ý. Nếu trước dấu ngoặc là dấu “-” thì phải đổi dấu tất cả các số hạng trong ngoặc.
\(a - b - c = \left( {a - b} \right) - c = a - \left( {b + c} \right).\)
Ví dụ 1:
\(\begin{array}{l}673 + \left[ {2021 - \left( {2021 + 673} \right)} \right] = 673 + \left[ {2021 - 2021 - 673} \right]\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 673 + \left( { - 673} \right) = 0\end{array}\)
Ví dụ 2:
\(\begin{array}{l}12 + 13 + 14 - 15 - 16 - 17 = \left( {12 - 15} \right) + \left( {13 - 16} \right) + \left( {14 - 17} \right)\\ = \left( { - 3} \right) + \left( { - 3} \right) + \left( { - 3} \right) = - \left( {3 + 3 + 3} \right) = - 9\end{array}\).
- Trả lời Câu hỏi trang 67 SGK Toán 6 Kết nối tri thức với cuộc sống
- Trả lời Hoạt động 1 trang 67 SGK Toán 6 Kết nối tri thức với cuộc sống
- Trả lời Hoạt động 2 trang 67 SGK Toán 6 Kết nối tri thức với cuộc sống
- Trả lời Luyện tập 1 trang 68 SGK Toán 6 Kết nối tri thức với cuộc sống
- Trả lời Luyện tập 2 trang 68 SGK Toán 6 Kết nối tri thức với cuộc sống
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 6 - Kết nối tri thức - Xem ngay