Hoạt động 8 trang 164 Tài liệu dạy – học Toán 8 tập 1


Giải bài tập Cho tứ giác ABCD có hai đường chéo AC và BD vuông góc với nhau và có độ dài lần lượt là AC = d1, BD = d2 (h.14). Hãy chứng tỏ hình chữ nhật EFGH có diện tích gấp đôi tứ giác ABCD. Từ đó, diện tích tứ giác ABCD.

Đề bài

Cho tứ giác ABCD có hai đường chéo AC và BD vuông góc với nhau và có độ dài lần lượt là AC = d1, BD = d2 (h.14). Hãy chứng tỏ hình chữ nhật EFGH có diện tích gấp đôi tứ giác ABCD. Từ đó, diện tích tứ giác ABCD.

Lời giải chi tiết

\({S_{EBOA}} = OA.OB\) (EBOA là hình chữ nhật),

\({S_{OAB}} = {1 \over 2}OA.OB\) (\(\Delta OAB\) vuông tại O)

Do đó \({S_{EBOA}} = 2{S_{OAB}}\)

Tương tự: \({S_{BFCO}} = 2{S_{OBC}},\,\,{S_{OCGD}} = 2{S_{OCD}},\,\,{S_{AODH}} = {S_{OAD}}\)

Do vậy

\(\eqalign{  & {S_{EFGH}} = {S_{EBOA}} + {S_{BFCO}} + {S_{OCGD}} + {S_{AODH}}  \cr  & \,\,\,\,\,\,\,\,\,\,\,\,\, = 2{S_{OAB}} + 2{S_{OBC}} + 2{S_{OCD}} + 2{S_{OAD}}  \cr  & \,\,\,\,\,\,\,\,\,\,\,\,\, = 2\left( {{S_{OAB}} + {S_{OBC}} + {S_{OCD}} + {S_{OAD}}} \right) = 2{S_{ABCD}} \cr} \)

Mà \({S_{EFGH}} = {d_1}{d_2}\)

Do đó \(2{S_{ABCD}} = {d_1}{d_2}\).

Vậy \({S_{ABCD}} = {1 \over 2}{d_1}{d_2}\).

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Luyện Bài Tập Trắc nghiệm Toán 8 - Xem ngay

Tham Gia Group Dành Cho 2K10 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến lớp 8 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều). Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.