Bài 6.51 trang 192 SBT đại số 10


Giải bài 6.51 trang 192 sách bài tập đại số 10. Chứng minh rằng ...

Lựa chọn câu để xem lời giải nhanh hơn

Cho \({0^0} < \alpha  < {90^0}\).

LG a

Có giá trị nào của \(\alpha \) sao cho \(\tan \alpha  < \sin \alpha \) hay không?

Lời giải chi tiết:

Với \({0^0} < \alpha  < {90^0}\) thì \(0 < \cos \alpha  < 1\) hay \({1 \over {\cos \alpha }} > 1\)

Nhân hai vế với \(\sin \alpha  > 0\) ta được \(\tan\alpha  > \sin \alpha \).

Vậy không có giá trị nào của \(\alpha ({0^0} < \alpha  < {90^0})\) để \(\tan\alpha  < \sin \alpha \)

LG b

Chứng minh rằng \(\sin \alpha  + \cos \alpha  > 1\)

Lời giải chi tiết:

Ta có \(\sin \alpha  + \cos \alpha  > 0\) và \(\sin \alpha \cos \alpha  > 0\). Do đó

\(\eqalign{
& {(\sin \alpha + \cos \alpha )^2} \cr &= {\sin ^2}\alpha + c{\rm{o}}{{\rm{s}}^2}\alpha + 2\sin \alpha c{\rm{os}}\alpha \cr 
& {\rm{ = 1 + 2}}\sin \alpha c{\rm{os}}\alpha > 1 \cr} \)

Từ đó suy ra: \(\sin \alpha  + \cos \alpha  > 1\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>> Học trực tuyến Lớp 10 tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, hoàn trả học phí nếu học không hiệu quả.


Góp ý Loigiaihay.com, nhận quà liền tay
Gửi bài