Bài 6.50 trang 192 SBT đại số 10


Giải bài 6.50 trang 192 sách bài tập đại số 10. Rút gọn các biểu thức (không dùng bảng số và máy tính)

Lựa chọn câu để xem lời giải nhanh hơn

Rút gọn các biểu thức (không dùng bảng số và máy tính)

LG a

\({\sin ^2}({180^0} - \alpha )\) \( + \tan ^2({180^0} - \alpha ){\tan ^2}({270^0} - \alpha ) \) \(  + \sin ({90^0} + \alpha )\cos(\alpha  - {360^0})\)

Lời giải chi tiết:

\({\sin ^2}({180^0} - \alpha ) \) \(  + \tan ^2({180^0} - \alpha ){\tan ^2}({270^0} - \alpha ) \) \(  + \sin ({90^0} + \alpha )\cos(\alpha  - {360^0})\)

= \({\sin ^2}\alpha  + {\tan ^2}\alpha {\cot ^2}\alpha  + {\cos ^2}\alpha  = 2\)

LG b

\({{\cos (\alpha  - {{90}^0})} \over {\sin ({{180}^0} - \alpha )}} + {{\tan (\alpha  - {{180}^0})c{\rm{os(18}}{{\rm{0}}^0} + \alpha )\sin ({{270}^0} + \alpha )} \over {\tan ({{270}^0} + \alpha )}}\)

Lời giải chi tiết:

\({{\cos (\alpha  - {{90}^0})} \over {\sin ({{180}^0} - \alpha )}} + {{\tan (\alpha  - {{180}^0})c{\rm{os(18}}{{\rm{0}}^0} + \alpha )\sin ({{270}^0} + \alpha )} \over {\tan ({{270}^0} + \alpha )}}\)

\(\begin{array}{l}
= \frac{{\cos \left( {{{90}^0} - \alpha } \right)}}{{\sin \alpha }} + \frac{{\tan \alpha .\left( { - \cos \alpha } \right)\sin \left( { - {{90}^0} + \alpha } \right)}}{{\tan \left( {{{90}^0} + \alpha } \right)}}\\
= \frac{{\sin \alpha }}{{\sin \alpha }} + \frac{{\tan \alpha .\left( { - \cos \alpha } \right)\left[ { - \sin \left( {{{90}^0} - \alpha } \right)} \right]}}{{\tan \left[ {{{90}^0} - \left( { - \alpha } \right)} \right]}}\\
= 1 + \frac{{\tan \alpha .\left( { - \cos \alpha } \right)\left( { - \cos \alpha } \right)}}{{\cot \left( { - \alpha } \right)}}\\
= 1 + \frac{{\frac{{\sin \alpha }}{{\cos \alpha }}.{{\cos }^2}\alpha }}{{ - \cot \alpha }}\\
= 1 - \frac{{\sin \alpha \cos \alpha }}{{\frac{{\cos \alpha }}{{\sin \alpha }}}}\\
= 1 - {\sin ^2}\alpha \\
= {\cos ^2}\alpha
\end{array}\)

LG c

\({{\cos ( - {{288}^0})cot{{72}^0}} \over {tan( - {{162}^0})\sin {{108}^0}}} + \tan {18^0}\)

Lời giải chi tiết:

\({{\cos ( - {{288}^0})cot{{72}^0}} \over {tan( - {{162}^0})\sin {{108}^0}}} + \tan {18^0}\)

\( = {{\cos ({{72}^0} - {{360}^0})\cot {{72}^0}} \over {\tan ({{18}^0} - {{180}^0})\sin ({{180}^0} - {{72}^0})}} - \tan {18^0}\)

= \({{{\rm{cos7}}{{\rm{2}}^0}\cot {{72}^0}} \over {\tan {{18}^0}\sin {{72}^0}}} - \tan {18^0}\)

= \({{{{\cot }^2}{{72}^0}} \over {\tan {{18}^0}}} - \tan {18^0} \) \(= {{{{\tan }^2}{{18}^0}} \over {\tan {{18}^0}}} - \tan {18^0} = 0\)

LG d

\({{\sin {{20}^0}\sin {\rm{3}}{{\rm{0}}^0}\sin {{40}^0}\sin {{50}^0}\sin {{60}^0}\sin {{70}^0}} \over {cos{{10}^0}{\rm{cos5}}{{\rm{0}}^0}}}\)

Lời giải chi tiết:

Ta có: \(\sin {70^0} = \cos {20^0},\sin {50^0} = \cos 4{{\rm{0}}^0};\) \(\sin {40^0} = cos{50^0}\).

Vì vậy

\({{\sin {{20}^0}\sin {\rm{3}}{{\rm{0}}^0}\sin {{40}^0}\sin {{50}^0}\sin {{60}^0}\sin {{70}^0}} \over {cos{{10}^0}{\rm{cos5}}{{\rm{0}}^0}}}\)

= \(\eqalign{
& {{{1 \over 2}.{{\sqrt 3 } \over 2}.\sin {{20}^0}\cos {\rm{2}}{{\rm{0}}^0}\cos {{50}^0}\cos {{40}^0}} \over {cos{{10}^0}{\rm{cos5}}{{\rm{0}}^0}}} \cr 
& = {{{1 \over 2}.{{\sqrt 3 } \over 4}\sin {{40}^0}.cos{{40}^0}} \over {{\rm{cos1}}{{\rm{0}}^0}}} \cr} \)

= \({{{{\sqrt 3 } \over {16}}\sin {{80}^0}} \over {cos{{10}^0}}} = {{\sqrt 3 } \over {16}}\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.2 trên 5 phiếu

>> Học trực tuyến Lớp 10 tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, hoàn trả học phí nếu học không hiệu quả.


Góp ý Loigiaihay.com, nhận quà liền tay
Gửi bài