Bài 6.42 trang 191 SBT đại số 10


Giải bài 6.42 trang 191 sách bài tập đại số 10. Trong các đẳng thức sau, đẳng thức nào đúng, đẳng thức nào sai?

Lựa chọn câu để xem lời giải nhanh hơn

Trong các đẳng thức sau, đẳng thức nào đúng, đẳng thức nào sai?

LG a

\(\sin (x + \dfrac{\pi }{2}) = \cos x\);

Lời giải chi tiết:

Đúng vì:

\(\begin{array}{l}
\sin \left( {x + \dfrac{\pi }{2}} \right) = \sin \left[ {\pi - \left( {\dfrac{\pi }{2} - x} \right)} \right]\\
= \sin \left( {\dfrac{\pi }{2} - x} \right) = \cos x
\end{array}\)

LG b

\(\cos(x + \dfrac{\pi }{2}) = \sin x\);

Lời giải chi tiết:

Sai vì:

\(\begin{array}{l}
\cos \left( {x + \dfrac{\pi }{2}} \right) = \cos \left[ {\pi - \left( {\dfrac{\pi }{2} - x} \right)} \right]\\
= - \cos \left( {\dfrac{\pi }{2} - x} \right) = - \sin x
\end{array}\)

LG c

 \(\sin (x - \pi ) = \sin x\);

Lời giải chi tiết:

Sai vì:

\(\begin{array}{l}
\sin \left( {x - \pi } \right) = \sin \left[ { - \left( {\pi - x} \right)} \right]\\
= - \sin \left( {\pi - x} \right) = - \sin x
\end{array}\)

LG d

\(\cos(x - \pi ) = \cos x\).

Lời giải chi tiết:

Sai vì:

\( \begin{array}{l}
\cos \left( {x - \pi } \right) = \cos \left[ { - \left( {\pi - x} \right)} \right]\\
= \cos \left( {\pi - x} \right) = - \cos x
\end{array}\) 

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Học trực tuyến Lớp 10 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu


Gửi bài