Bài 6.49 trang 192 SBT đại số 10


Giải bài 6.49 trang 192 sách bài tập đại số 10. Chứng minh rằng...

Lựa chọn câu để xem lời giải nhanh hơn

Chứng minh rằng

LG a

 \(\sin ({270^0} - \alpha ) =  - c{\rm{os}}\alpha \)

Lời giải chi tiết:

 \(\eqalign{
& \sin ({270^0} - \alpha ) = \sin ({360^0} - ({90^0} + \alpha ) \cr 
& = - sin({90^0} + \alpha ) = - c{\rm{os}}\alpha \cr}\)

LG b

 \({\rm{cos}}({270^0} - \alpha ) =  - \sin \alpha \)

Lời giải chi tiết:

\(\eqalign{
& \cos ({270^0} - \alpha ) = \cos ({360^0} - ({90^0} + \alpha )) \cr 
& = \cos ({90^0} + \alpha ) = - {\rm{sin}}\alpha \cr} \)

LG c

\(\sin ({270^0} + \alpha ) =  - c{\rm{os}}\alpha \)

Lời giải chi tiết:

\(\eqalign{
& \sin ({270^0} + \alpha ) = \sin ({360^0} - ({90^0} - \alpha )) \cr 
& = - \sin ({90^0} - \alpha ) = - c{\rm{os}}\alpha \cr} \)

LG d

\({\rm{cos}}({270^0} + \alpha ) = \sin \alpha \)

Lời giải chi tiết:

\(\eqalign{
& {\rm{cos}}({270^0} + \alpha ) = \cos ({360^0} - ({90^0} - \alpha ) \cr 
& = cos({90^0} - \alpha ) = \sin \alpha \cr} \)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Học trực tuyến Lớp 10 tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, hoàn trả học phí nếu học không hiệu quả.