Bài 6.48 trang 192 SBT đại số 10


Giải bài 6.48 trang 192 sách bài tập đại số 10. Tính các giá trị lượng giác của cung ...

Lựa chọn câu để xem lời giải nhanh hơn

Tính các giá trị lượng giác của cung \(\alpha \) biết

LG a

\(\sin \alpha  = 0,6\) khi \(0 < \alpha  < {\pi  \over 2}\)

Lời giải chi tiết:

\(0 < \alpha  < {\pi  \over 2} =  > \cos \alpha  > 0\), do đó

\(\cos \alpha  = \sqrt {1 - \sin ^2 \alpha }  \) \(= \sqrt {1 - 0,36}  = \sqrt {0,64}  = 0,8\)

=> \(\tan \alpha  = {3 \over 4},\cot \alpha  = {4 \over 3}\)

LG b

\({\rm{cos}}\alpha  =  - 0,7\) khi \({\pi  \over 2} < \alpha  < \pi \)

Lời giải chi tiết:

\({\pi  \over 2} < \alpha  < \pi  =  > \sin \alpha  > 0\), do đó

\(\sin \alpha  = \sqrt {1 - {{\cos }^2}\alpha }  \) \(= \sqrt {1 - 0,49}  = \sqrt {0,51}  \approx 0,71\)

Suy ra: \(\tan \alpha  =  - {{0,7} \over {0,71}} \approx  - 0,98,\) \(\cot \alpha  \approx  - 1,01\)

LG c

\(\tan \alpha  = 2\) khi \(\pi  < \alpha  < {{3\pi } \over 2}\)

Lời giải chi tiết:

\(\pi  < \alpha  < {{3\pi } \over 2} =  > \cos \alpha  < 0\), do đó

\(\eqalign{
& \cos \alpha = - {1 \over {\sqrt {1 + {{\tan }^2}\alpha } }} \cr &= - {1 \over {\sqrt 5 }} = - {{\sqrt 5 } \over 5}, \cr 
& \sin \alpha = \tan \alpha .\cos \alpha = - {{2\sqrt 5 } \over 5}\cr & \cot \alpha = \frac{{\cos \alpha }}{{\sin \alpha }}= {1 \over 2} \cr} \)

LG d

\(\cot \alpha  =  - 3\) khi \({{3\pi } \over 2} < \alpha  < 2\pi \)

Lời giải chi tiết:

 \({{3\pi } \over 2} < \alpha  < 2\pi  =  > \sin \alpha  < 0\), do đó

\(\eqalign{
& \sin \alpha = - {1 \over {\sqrt {1 + {{\cot }^2}\alpha } }} \cr &= - {1 \over {\sqrt {10} }} = - {{\sqrt {10} } \over {10}}, \cr 
& \cos\alpha  = \sin \alpha .\cot \alpha = {{3\sqrt {10} } \over {10}}\cr & \tan\alpha  = \frac{{\sin \alpha }}{{\cos \alpha }}= - {1 \over 3} \cr} \)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Học trực tuyến Lớp 10 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu


Gửi bài