Bài 4.5 trang 104 SBT đại số 10


Giải bài 4.5 trang 104 sách bài tập đại số 10. Cho a, b, c, d là những số dương; x, y, z là những số thực tùy ý. Chứng minh rằng...

Đề bài

Cho a, b là những số dương. Chứng minh rằng \({a^2}b + \dfrac{1}{b} \ge 2a\)

Phương pháp giải - Xem chi tiết

Sử dụng bất đẳng thức Cô-si: \(\dfrac{{a + b}}{2} \ge \sqrt {ab} \)

Lời giải chi tiết

Áp dụng BĐT Cô-si cho hai số dương \(a^2b\) và \(\dfrac{1}{b}\) ta có:

\({a^2}b + \dfrac{1}{b} \ge 2\sqrt {{a^2}b.\dfrac{1}{b}}  = 2a\).

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 1: Bất đẳng thức

>> Học trực tuyến Lớp 10 tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, hoàn trả học phí nếu học không hiệu quả.


Góp ý Loigiaihay.com, nhận quà liền tay
Gửi bài