Bài 4.10 trang 104 SBT đại số 10


Đề bài

Tìm giá trị lớn nhất của hàm số \(y = 4{x^3} - {x^4}\) với \(0 \le x \le 4\)

Phương pháp giải - Xem chi tiết

Khai triển biểu thức, đưa hàm về dạng nhỏ hơn một số a nào đó: \(y \le a\)

Thay giá trị a vào đề bài để xác định hàm lớn nhất khi nào

Lời giải chi tiết

\(y = 4{x^3} - {x^4} = {x^3}(4 - x)\)

\( \Leftrightarrow 3y = (x.x).[x(12 - 3x) ]\) \(\le {(\dfrac{{x + x}}{2})^2}{(\dfrac{{x + 12 - 3x}}{2})^2}\)

\( = \dfrac{{{{\left( {2x} \right)}^2}}}{4}.\dfrac{{{{\left( {12 - 2x} \right)}^2}}}{4}\) \( = \dfrac{{\left[ {2x\left( {12 - 2x} \right)} \right]^2}}{{16}}\)

\( \Rightarrow 48y \le {{\rm{[}}2x(12 - 2x){\rm{]}}^2}\) \( \le {(\dfrac{{2x + 12 - 2x}}{2})^4} = {6^4}\)

\( \Leftrightarrow y \le \dfrac{{{6^4}}}{{48}} = 27,\forall x \in {\rm{[}}0;4]\).

\(y = 27\) \( \Leftrightarrow \left\{ \begin{array}{l}x = x\\x = 12 - 3x\\2x = 12 - 2x\\x \in {\rm{[}}0;4]\end{array} \right. \Leftrightarrow x = 3.\)

Vậy giá trị lớn nhất của hàm số đã cho bằng 27 đạt được khi \(x = 3\).

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 1: Bất đẳng thức

>> Học trực tuyến Lớp 10 tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, hoàn trả học phí nếu học không hiệu quả.